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Hydrodynamic Equations and Correlation Functions 

The response of a system t.o an external disturbance can ;~lw>~~a be CA\- 
pwased in terms of time dependent correhttion functions of t,he undisturbed 
systrm. More particularly the linear response of a system diat,urbed alightlj 
frctrn equilibrium is characterized by the expectation value in the equilibrium 
~~nsemblc~, of a product of two apace- and time-dependent, opertitors. When a 
disturbance leads to a very slow variation in apace and time of all physicat 
(~uantiiiea, the response may alternatively be described b>- the lineariwd 
hydro(iynamic equations. The purpose of t,his paper is to exhibit the con~pli- 
cated structure the currelation functions must have in order t,hat, these do- 
acript,ions coincide. From the hydrodynamic ~(~uationa ! he slowly varying 
~xirl of t.he expectation values of cnrrelations of densities of conserved quani.i- 
I iw is inferred. Two illustrative esamplea are considered: spit\ diffusion antI 
t ransp~~rt, in m ordinary one-component fluid. 

Since the descriptions are equivalent, all i,ransport processes which ~wxr ilt 
the nonequilibrium system must he eshibited in the equilibrium correlatiotl 
functions. Thus, when the hvdrodynamic squat ions predict, the existence of :i 
diffusion proceaaZ the correlation functions will include a part which satisties 
:L ditl’usion equation. +Simil:wly when sound xwves ,xcur in t h(k ~lo~)e~~~~ili~lri~~~~~ 
.s.vstem, t.he.y will also be contained in the corwlation functions. 

Th(x description in t.erms of correlation funct iona leads nat ur:iiiy t(f PSJ~WS- 

siona for t,he transport coeficients like those discussed b,v Ku~~o. The :m:~lysis 
also leads to a number of sum rules relating the dissipative linwir c~&ici(wts 
I (I i hermodynamic derivatives. It elucidates the* peculiarl~~ singular limit ilkg 
t)eh:lvior these correlations must have. 
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virtually infinite complexity; on the other hand, the hydrodynamical limit is 
simply characterized by five partial differential equati0ns.l 

The simplification occurs because when all physical quantities vary slowly in 
space and time each portion of the system is almost in thermodynamic equi- 
librium. Under these conditions, the variation in the system is completely de- 
scribed by local values of the various thermodynamic variables-for example, by 
giving the pressure, density, and velocity as a function of space and time. The 
basis of fluid mechanics is the partial differential equations satisfied by these 
local thermodynamic quantities. 

In these hydrodynamic equations, there appear a variety of parameters whose 
values are not given by fluid mechanics. These parameters fall into two cate- 
gories. First, there are the thermodynamic derivatives which arise because 
changes in the various local variables are related by thermodynamic identities. 
Second, there are the transport coefficients like viscosity and thermal conduc- 
tivity which enter because the fluxes of thermodynamic quantities contain terms 
proportional to the gradients of the local variables. To find the values of the 
transport coefficients and thermodynamic derivatives, we must turn to a more 
fundamental theory than fluid mechanics. 

Recently, it has been appreciated that time-dependent correlation functions 
afford a powerful theoretical tool for investigating nonequilibrium behavior. 
Indeed a wide variety of nonequilibrium phenomena are described by thermo- 
dynamically averaged expectation values of products of pairs of densities of con- 
served quantities at different space-time points. In particular these correlation 
functions completely describe the nonequilibrium behavior of a system in which 
the deviation from equilibrium is small. Since, in principle, we know how to 
compute these equilibrium-averaged (2, 3) time-dependent correlation functions, 
Ire are in principle able to completely determine the behavior of a system slightly 
disturbed from equilibrium. Specifically, a calculation of the time dependent 
correlation functions must lead both to the hydrodynamic equations and the 
numerical values of all the thermodynamic derivatives and transport coefficients. 

In practice the computational difficulties involved in evaluating correlation 
functions are nontrivial. Indeed, the part of the correlation function which varies 
slowly in space and time and reflects the hydrodynamic equations is the most 
difficult part to compute. 

The reason for this difficulty is easy to see. The hydrodynamic equations refer 
to a system in local thermodynamic equilibrium. This local equilibrium is pro- 
duced and enforced by the frequent collisions between particles.z So, the hydro- 
dynamic equations refer to a situation in which the behavior of the system is 

1 This simplification is called a contraction of the description. It is discussed in ref. f 
A description of how this occurs is given in ref. 1 and also in ref. 4. 



dominated by collisions. On the other hand, the conventional methods (2, ,I) for 
computing correlation functions are based, in one sense or another, on a ex- 
pansion in some parameter describing the number of collisions in the system. 
This parameter is most often the strength of the iiiterparticle potential. Sitlw 
the hydrodynamic equations only appear when the behavior is domiilated 1)~ th(l 
secul:w eff&s of collisions, the most straightforward techniques for detwmit~i~lg 
ttle correlation functions cannot be successfully applied to the predictioli of 
hydrodynamic phenomeua.3 

In this paper, which is largely pedagogical, we shall be primarily WMY~~NYI 
\vit,h using t!he hydrodynamic equations to learn about’ the correlation functiot~s. 
OIW atlalysis will bear on the inverse problem, the deriJ:ation of the hydrodyiwn- 
cat eq~~atiolw, mainly ii1 a negative way. We shall see that the correlaCot1 f~uw 
tions m\kst exhibit complicated singular behavior :lt lollg wa\~ele~lg~~hs and low 
freque~~cies. This behavior, which does not result in each order of perturbat8iot~ 
theory, indicaks the necessity for determining successive approximaGons 0wough 
it,erative iiltegral c(luations, or equivalently through extensive resuninia~io~~ of 
peiturbatioii expansions. 

LIT? first, colwider the simplest example of a transport process: spin ditfwiou. 
111 this case the only hydrodynamic equation i s a ditiusion e(~uatioii for ttw spill 
magnetizaCon. From this hydrodynamic equation, w determine the form oU the 
slowly varyii~g part of the mag~letizatioil-~~~aglleti~~~ti(~~l corretatiolj i’u~~ctio~~. 
The hydrodynamic description which involves the spill swceptibility (a thernlo- 
dynamic derivative) and t’he spin diffusion coefFicient (a transport coeRici(~n~ ) 
enters into the correlation function. By comparing t,his result, with the cwrrel:ttio~~ 
function description we find how the correlation functioil determiiws l)ot h the 
thermodylwnic derivative and the transport coefficients. 

.I very similar t,ype of analysis is applied t,o the algebrakally mow ronlpl~~x 

case of t,ratwport in a single component fluid. Here, t,he linearized form of th(l 
usual eq~~ations of fluid mechanics serve as the hydrodynamic ec~mltiolls. ‘lb 

form of the correlation funcCons composed of the dwsities of conserved oper:~ tow 
(n11n1hY, melgy, and momentum) are again determined from thrw ~~ydrody- 
namic equations. In particular, it is shown how t,lw correlat,ioil funck)iw yield 
the various thermodynamic derivatives and the formulas discussed by KIIIMI (/I’) 
and many other people (7) for the relevant, transport cwficients: the viscosity, 
the bulk viscosity, and the thermal conductivity. 

The expressions derived are useful in calculating quantities whictl appear iIt 
the transport equations. They are also interestiilg for the co11~ws~ pwpow. ‘1%~ 

correlatioli functions themselves are of direct, experime~kal interest,. 11 tehstic 

ncwWm swt,twillg, for esample, directly rnws~wes the (~~t~sit,~r-(i~llsit~ CYI~W~:I 

3 C )IIC patssil)le corwlation t’unction approach has twrn ~liscussd t)y H:~J~I x11(1 K:I,]:IIIIII’I 
15). 
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tion function (8). By incorporating information about the form of the correlation 
function and the thermodynamic derivatives and transport coefficients which 
occur in it, we may attempt to interpret this kind of experimental data (9). In 
fact, a similar but more heuristic analysis (10) is already in use in this connection. 

II. SPIN DIFFUSION 

A. HYDRODYNAMIC DESCRIPTION 

As a concrete example of the simplest kind of transport process possible we con- 
sider a fluid composed of uncharged partieles with spin $& The particles interact 
through a velocity- and spin-independent force. This situation is realized to an 
excellent approximation in at least one system of current interest, liquid He3. 

In describing spin transport, we choose a specific direction of spin quantiza- 
tion. If, at a given point in space, the spin of the particles were just as likely to 
point antiparallel to the direction of quantization as parallel to it, the spin mag- 
netization would vanish there. However, if there were an imbalance between the 
densities of particles pointing in the two directions, there would be a magnetiza- 
tion proportional to the difference in densities. We shall represent the magnetiza- 
tion in the direction of quantization at the space-time point r, t by the symbol 
M(r, t). 

An essential feature of the discussion of spin transport will be the assumption 
that the total magnetization is conserved, that is, 

zt j &M(r, t) = 0. 

This neglects, for example, any coupling of the electron spins with magnetic 
impurities or nuclear spins. The conservation law (1) follows from the fact that 
the total magnetization is proportional to the total spin of the entire system, and 
this total spin is a constant of the motion. The conservation law also has a dif- 
ferential form, a continuity equation for the magnetization 

i M(r, tl + V.j”(r, t) = 0. 

Here, j”( r, t) is the magnetization current. We can write expressions for these 
quantities in terms of the quantum mechanical operators which describe the 
individual particles in the system. Let the vth particle have position r”(t), mo- 
mentum p”(t), and spin in the direction of quantization s”(t). Let m and 7 be 
the mass and spin magnetic moment of all the particles. Then, the magnetization 
and magnetization currents are given by 

M(r, t) = Zw.CtPCr - rdtl) 

j”Cr, tl = E7sv(t){pJt), 6(r - rJt))/2m1. 
(3) 
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Here, the curly brackets represent the anticommutator 

{A, B) = LlB + BA. 

lcor this system the hydrodynamic equation is extremely simple. JVheu all t’lw 
properties of the system vary slowly in space and time4 

(j”( r, t)) = -DV(J/( r, f )). I41 

The transport coefficient, D, is called the spin difTusion coefficient. By combinitig 
(2) and ~4’1, we get a diffusion equation for the magtlet.ization, 

$0 far, we have not asked about how the system came to be disturbed from 
full thermodynamic equilibrium. Of course, Eq. (5) is correct, whenever the 
variation in space and time is sufficiently slow, indepeudeut of the type of initial 
disturbawe, Sewrtheless, it is useful for us to consider a specific mechanitim for 
producing the deviation from equilibrium. 

l’he simplest such mechanism is a magnetic field JSC r, t 1 pointing iu the direr- 
tiou of quantization. Let us suppose that a spatially varying magnetic field has 
beet1 adiabatically applied aud is suddenlJr turned off at time t = 0, so that 

where c is aI1 infinitesimal positive number. Of course, a magnetic field wllich is 
iudependeut of time and varies slowly in space will induce a maguetizat,iotl oi 
the form 

@f(r)) = xH(r). ii1 

The coefficient, x, is called the spin susceptibility. It is the thermody~lamic 
derivative 

Kow, we have a complete description of the response to the disturbance ( ti 1. 

While the magnetic field is applied, the magnetization must satisfy c 7 ) ; after it 
is turned off, If (r, t) will satisfy (3. In order to represent the relaxation 1~ 
havior iu a colivenient’ form, we define a ({uantit,y M( k, 2) which is t,he l;otttjpl 
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transform of the induced magnetization in space and effectively the Laplace 
transform in time. That is, we write 

In Eq. (9), z is a complex number. It must lie in the upper half of the complex 
plane for the time integral to converge. 

It is quite easy to calculate M(k, 2). We perform the transformation indicated 
in (9) upon (5), finding 

After this equation is integrated by parts, it becomes 

According to (7), the spatial Fourier transform of the magnetization at time 
zero is x times the Fourier transform of the magnetic field. Thus, we have 

0 = (-iz + Dk2)M(k, Z) - / n!rxH(r)e-‘k’r. 

We use the symbol H(k) to denote the Fourier transform of the magnetic field 
at time zero and find 

Equation (10) is a simple representation of the information contained in the 
hydrodynamic equations for spin diffusion. Notice that the existence of a diffu- 
sion process is reflected in the pole in (10) at z = -iDk2. 

We shall use the evaluation (10) of M (k, Z) to determine the magnetization- 
magnetization correlation function. 

B. CORRELATION FUNCTION DESCRIPTION 

In order to develop the correlation function description of spin diffusion, we 
notice that an external magnetic field can be represented by an extra time- 
dependent term added to the Hamiltonian of the system 

According to the standard techniques of quantum mechanical perturbation 
theory, the linear change in the average of any operator, X4 (r, t), induced by an 



extra term in the Hamiltonian is 

Equation ( 12) applies to a system which was in complete t’hermal e(~uilibrium 
at, time minus infinity; the expectation value on the right hand side, ( ),.,I. , is 
the expectation value in the equilibrium ensemble. This result is discussed in 
some detail in Appendix A. 

We apply ( 12) to a discussion of t,he iuduced magnetization by using the 
cha~lge in t,he Hamiltonian given by (6 ) and ( 11). The induced maguetizatiou 
is give11 t?? 

(J/(r, f)) = i /“Lc!CP”’ 1 &‘IY(r’~([JICr, f), Cijfr’, f’)]Lq. / 5 0, 

t lij ) 

= i f; fltf/ j h’HCr’1([ilf Cr, t1, ALCr’, t’)]hcl. t 2 0. 

In order to compare ( 13) with the result of our hydrodynamic discussion, we 
introduce an integral representation for the commutator of t’he magnetization 
at, different space-time points. Because of the space-time t,ranslational invariance 
of the e(luilibrium system we ma,v write 

\Ve shall call X” ck, u ) the absorptive part of the dynamic susceptibility. Becausr 
of the rotational invariance of the system, x” (k, CO) depends only upon thr 
magnitude of k-not its direct,iou. Because Jf (r, ! 1 is a Hermitiall operator, 
x”( k, CL I is real and au odd function of the frequency, GJ. 

I+I(iuat,ion ( 13 1 now- becomes 

\Ve convert ECU. ( 16) into au expression for M( k, 2 ) by employing the definition 
(!I J of this Laplace-Fourier tjransform. In this way we fiud 

Equat,ioii t 10) gives an expression foi Jf (k, z I which is appropriate in ttle 
limit of small 1;; Eq. ( 17’1 gives an expression for AI ( kT 2 1 in terms of x” c L., u 1. 
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We can therefore solve for x”(I$ CA) in the long wavelength limit. We notice that 
when x”(I?, CA’) is a smooth function of a’, we can use the identity 

where CP stands for the principal value. Thus, when z lies just above the real axis 
z = w + ic, 

Equation (10) yields the expression 

Because the hydrodynamic equations are valid for slowly varying disturbances, 
Eq. (19) gives the correct expression for x” at small hi Notice that at long 
wavelengths and low frequencies the value of x”(k, w) depends sensitively on 
the relative magnitude of w and h?. When u << Dh? 

x”( k, w) 2i wx/Dk’ 

while when Dk’ << u 

x”(k, w) g xDk’/w. 

Equation (20) for the dynamic spin susceptibility contains the same informa- 
tion as the hydrodynamic equations from which it was derived. The fact that 
the magnetization satisfies a diffusion equation is reflected in the poles of (20) 
at frequencies A iDk2. The commutator deduced 
from (20) and (14), 

([M(r, r!), M(r’, t’)])eQ. = - ixD 1 & ~z~~k’(r-r’)-D~z(~-t’) for t > t’ 

exhibits this diffusive character. 

C. SUM RULES FOR x"(k, W) 

So far, we have only made use of xV (k, CO), the absorptive part of the dynamic 
spin susceptibility. In our further work, it will be convenient to use the complex 
dynamic susceptibility 

XCk 21 = 1 
dco’ x%, ~‘1. 
%- w’ - 2 (21) 

When z lies just above the real axis X(/C, z) may be split into its real and imaginary 
parts 

XC& 6J + ic) = &k, w) + if(k, w), 



the identity ( 18 ) yielding 

Equation (22a) is ordinarily called a Kramers-Kronig relation. There arr t\\-o 
such relations, which give the real part of the response in terms of t,he imagillar> 
part al)d Tire versa. The other IGarners-Kronig relatiojl is 

Equations (22a) and (Eb) may be derilred from one auother by using the 
relation 

and hence. 

The quantity ~(AI, 0 ) will prove to be particularly important in all that follo\vs. 
Its importawe is illustrated by t,aking the Fourier transform of ECU. ( 15 ‘1, which 

gives 

Since the response at time zero is a response t,o an adiabatically applied distjurtj- 
awe, x(/i, 0) is the static, wave-number dependent, magnetic susceptibility. 
Henceforth, we shall use the conventional abbrwiation x(k) = XC li, 0 ). 12rom 
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(24) we have 

Equation (24) gives the exact response to an adiabatically magnetic field. 
However, according to Eq. (7), when the field varies very slowly in space 

M(k) = xH(k). (7) 

Thus, it follows that 

x = &lx(k) = 1;IlJ$*. ml 

In general, we may view (25) as a sum rule which expresses the static suscep- 
tibility in terms of an integral of x” (AC, CA). Eq. (25) is just an application of one 
of the Kramers-Kronig relations at zero frequency. In the long wavelength 
limit, the value of the sum rule is the thermodynamic derivative, 

It is instructive to compare (26) with a more familiar type of sum rule which 
expresses moments of x”(k, U) in terms of equal time commutators. The first 
nontrivial example of this kind of sum rule is obtained by taking the time de- 
rivative of Eq. (14) and applying the conservation law (2). This leads to the 
identity 

We can easily compute the equal time commutator of the magnetization and the 
magnetization current by using the definitions (3) of these quantities and the 
canonical commutation relations. The result 

([j”(r, L), M(r’, i’)]&. ]M = (-rZ/4m)G’6(r - r’)(n(r, t))eq. ~7) 

is a very disguised version of the fundamental statement that the commutator 
of the position and the momentum is i. Here, n(r, t) is the density of particles 
at the space-time point r, t. Equation (27) implies 
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Equation ( 28) is the spin analog of the longitudinal ,/‘-sum rule which has iw~n 
extensively discussed in the literature. This sum rule is exact for all values of 1,. 
as is the static Kramer+Kronig relation ( 25). However the latter has an iI&- 
pendently computable thermodynamic value only for small /#,. The sum r111es also 
difl’er in that Eq. (28 ) expresses a moment of x” ill terms of au equal time w~nl- 
m~~tator while EC{. (25) gives the value of the time integral of a comm\ltator. 

These sum rule statements can be incorporated in PLl. ( 17) for J!(k, z) /1(k) 
l)y performing an expansion for large values of 2. Iii particular, E~is. C 2:s I :Lll(i 
( 21 ) may be rewitteu as 

Thr coefficieut of i;‘2’ vanishes because x”( k, CL 1 is au odd functioil of the fr+ 
c~wncy. A1ccording to the sum rule (27), the coefficieilt, of z’,‘z” is 1 4,~~2~’ VI. 
Tl1erefore, for small /i, 

N(k,z) 
lim ~ 
:em H(k) = - 

tYsing the hydrodynamic equations, we found that for small values of L, a11~l 2 

10 ! 

aiid 

1,et us observe now that’ the hydrodyuamic analysis agrees with the sum rule ( 2.5 ) 
l)ut completely fails to satisfy the rule (28 ). The easiest way of verifying lwth 
properties is to notice that Eq. l 10) agrees wit,h ECU. ( 30) at large v~dws of z 

only to order i;‘z. 
Wr might have anticipated that the second sum rl11e was liot satisfied by tlw 

expression obtained from the hydrodynamic approximation ( 10 ) since t,hat mm 

rule gives a result of order k’ while ( 10) is only expected to be appropriate for 
the smallest values of 1~‘. We can understaud pheilon~eil(~logically how the SIUII 
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rule (28) is satisfied by extending the hydrodynamic description to include the 
effect of a collision time. 

D. INTRODUCTION OF RELAXATION TIME 

The main reason why the function x”(k, U) deduced from the hydrodynamic 
equations fails to satisfy the commutation sum rule can be traced to the assump- 
tion that the current responds instantly to changes in the magnetization ac- 
cording to 

G”Cr, t)) = --DV@fCr, tl) for t 2 0. (4) 

Actually, there must be some lag in the response of the magnetic current to rapid 
changes in the magnetization. Let us suppose that this response lag is described 
by a single relaxation time, T, according to the equation 

$ (j”(r, t)) = -b [(j”(r, t)) + DV(MCr, t))l for t 2 0. 

We may substitute this form for the current into the conservation law and find 

[$+t($--DV’)](M(r,t))=O fortZ0. (31) 

We again find M( k, z) by Laplace transforming in time and Fourier transforming 
in space the equation of motion. After using the initial conditions 

we obtain 

(32) 

To see whether (32) agrees with our sum rules, we expand for large .z obtaining 

Hence, all the requirements including (30) can be satisfied by taking a relaxa- 
tion time which satisfies 

DAY;. (33) 

Equation (33) has been used by D. Hone (I,%) to achieve a semiquantitative 
understanding of the experimental value of D in liquid He3 at very low tempera- 
tures. It has also been used by T. Moriya (15%) in discussing the spin correlation 
function in ferromagnets. 
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L4ccording to Eq. (lg), the dynamic susceptibility can be determined as 
Re[M(k, w)/H(k)]w. Therefore, from Eqs. (32) and (33) we find iu the single 
collision time approximation 

xU(/<,w) = 
~Jw!Ad 

cl? + D‘q/? - (4cd~~??l/ny)]~ 
t :;4 ) 

:Uso, from ( 32 J and (33) we find 

141. DISPER~IOX RELATION REPRESENTATIONS FOR SUSCEPTIBILITY 

lt should be emphasized that Eqs. (34) and (,%,I are in 110 sense exact,. In t,his 
section, we shall generalize the phenomenological discussion in an exact form. 

In order to derive this generalization, we first examine the analytic properties 
of X(/Y, z ). We note that X(/C, 2) is an analytic function of the complex variable z 
whose singularities lie entirely on the real 2 axis. J:rom 1~2~s. c 35 1 alld ( 23 1. \ve 
see that, in the constant collision time approximation, 

~‘onw~uently, we might guess that the (quantity 

1 1 
4 2 x(k, 2) x+ t 1 + ;g 

has a relatively simple analytic structure. 
To justify this inference we examine the zeros of X(/C, z). The import,ant ol)- 

servation to be made is that in a thermodynamically stable system the (quantity 
q” ( L., u J, which measures the difference between the energy fed into the system 
alld the energy given up, by a weakly applied field, must be positive definite. 
l:or a canonical ensemble this positive definiteness may be directly verified l)y 
expanding the commutator in terms of matrix element’s and using the fluctuat,ion 
dissipation theorem. Both of these st’atements are proven in the app~~&ws. 
t *sing the oddness of x” ( I<, w ) rve may write 

\Ve see that Imx( /;, 2) only vanishes for real 2’~~--that is for 22 either purely real 
or purely imaginar.y. Moreover when 2’ is negaG\re XC k, z 1 is rwl alld positive. 
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Thus the only possible zeros of x( k, 2) appear for real z. Since the zeros of x (k, 2) 
are poles of l/x(k, z), the only poles of l/x(k, Z) lie on the real frequency axis. 
Finally we recall that in the limit of large z 

From these properties we deduce the spectral form 

To interpret the spectral weight function, J(k, u), we compare this result with 
Eq. (36). In Eq. (36), the variable z is restricted to lie in the upper half of the 
complex plane. When z = u + ie the spectral representation becomes 

Since 2if(k, U) is equal to the discontinuity in the function x-‘(k, .z) across the 
real axis and that discontinuity is imaginary, the function j’(,$ U) is a real odd 
function of the frequency. If the function L$ were independent of frequency, the 
last term in Eq. (38) would vanish and Eq. (38) would be identical with Eq. (36) 
with j’ = u/Dh?. Therefore, it is reasonable to write 

f(k, u) = w/D(,k, u),k2 (39) 

with the knowledge that in the limit small wave number and very small frequency 
D(k, U) reduces to t,he spin diffusivity, at least when wz s - (Dk’)‘. 

This leads to an exact spectral representation for x(k, 2) 

and, from Eq. (19) 

(411 

Of course, Eqs. (40) and (41) give only one of many possible spectral repre- 
sentations for the response. The virtue of this particular representation, how- 
ever, is that the low frequency and low wave number limit of all the quantities 
appearing on the right hand side of these equations will be regular. This know-l- 



edge is quite useful both for theoretically estimating x( 1;) and DC /<, CQ) aijd fol 
interpreting experimental results on x0 (k, u 1 ii1 terms of x and D. Xote t,hat if 
the function D( k, CA) were constant (40) and (41 ) would be identical wit,11 (i3.5 I 
and ( 3-l I. This gives a precise meaning to t’he sill& collision t,ime approximation. 

Eluatious (40) and (41 J are easily modified to describe other self-diffusioli 
processes. In our analysis, the spin on the particles just serves as a kind of label. 
If the label were somewhat different; for example, if the system coutained parti- 
cles painted red and green or identically interacting isotopes, the results W)IM 
be unaltered. 

Another useful representation is obtained by observing that the f~mct~iot~ 

is analytic off the real axis and approaches unity at infinity. Its logarithm is 
therefore analytic for complex 2 and its real part is continuous for real 2, It is 
therefore possible to represent the function as 

where 6 is a real function. Lk CG approaches the real axis we find 

JIoreover the discontinuity in x-‘(k, z)! x-‘( k ) is given by 

j(ii., w) = A-‘(k, w) sin a(/;, 0~1. 

This permits us to identify the argument of x-‘( L,, z 1, t,hat, is, 6, as 

W COt a(/<, Wj = Dli’ 

iI1 a first approximation, and as 

ill the uext. We might therefore introduce D as the constant km iu an effective 
range expansion. 

13'. EXPRESSION ENTAILING THE THEOREM 

C )ne may carry the analysis a bit further by employing the fluctuatiowdissipa- 
tiotl theorem. This theorem relates the canonically or grand canonically aI.eraged 
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commutator and anticommutator of any pair of hermitian operators A;( r, L), 
each of which commutes with the number operator N and transforms in time 
according to 

This is to say, the operators are assumed to have no explicit time dependence 
and the usual implicit time dependence of Heisenberg representation operators. 
The theorem states that if the commutator of two such operators is given by 

their anticommutator is given by 

({ Adr, tl - &h., AA-‘, f’l - &h. 1) 

This relationship between the commutator and the anticommutator is called a 
fluctuationdissipation theorem because the anticommutator expresses the time 
dependent correlations or fluctuations in the system and, as we have seen, the 
commutator describes the transport coefficient or dissipation.5 

In particular, the magnetization anticommutator is 

In the remainder of this section we shall continue to omit the subscripts since 
we are only considering one operator, the magnetization. From Eq. (20), we see 
that for large values of r and t, or small values qf k and U, the anticommutator is 

Therefore, the anticommutator also has a part which satisfies the diffusion 
equation. 

Of course, it is hardly surprising that this correlation function behaves in the 
same way as a response to an external disturbance. The correlation function re- 

5 The fluctuation-dissipation theorem was first derived by H. Nyquist (1%) who related 
the random noise in an electrical circuit (the fluctuations) to the response of the circuit 
to an applied voltage (the dissipation). H. B. Callen and T. R. Welton (1%) recognized 
the importance of Nyquist’s idea and generalized it somewhat. The fluctuation-dissipation 
theorem lies at the very heart of much recent work in many particle physics. It is, for 
example, the “boundary condition ” utilized by Martin and Schwinger (2). For a discussion 
of the fluctuation-dissipation theorem which is close to the spirit and purpose of this article, 
see (6). 



flwts how the natural fluctuations in the system die out, while the hydrodynamic 
ecluations describe how externally induced deviations from equilibrium disappear. 
But the system should not really have any way of knowing w-h&her a parCcula1 
deviation from equilibrium was produced by a natural fluctuatiot~ or an external 
disturbance. Therefore, the same transport processes which appear iii the hydra- 
dynamic equations should also manifest themselves in correlatiotl fu~wtio~w. 

The fluctuation-dissipation theorem can be used to obtain a fre(~uet~~1.v ~~~w~ed 
espwssiotl for the spin diffusion co&icient, II. I~rom ( 20’1 

l-sing c 43 1, 1)~ ran be expressed in terms of the magnet’ization a~lti~o~~llll~~a~o~ 
as 

The difierential conservation law, (d;ll/,&) + r. j ” = 0, uow gives 

Siiw the direction of k is now quite irrelevant, WC can replace k. j”’ k by, say. 
t,lip .r component of j.“. Thus, we finally find 

This type of expression, in which the transport coeficient is given in t,ernw of 
the anCcommutator of the currents, has been mwh discussed in the literature 
(6, 7). 

In addit,ion tIo relating fluctuations to dissipation as in lq:~ls. ( 43 I and ( 4-1 J w 
may use the identity (42) to make another inference. For this purpow w ot)- 
servo that, the susceptibility is the thermodynamic dwivat,iw, 

lcor a system in thermal equilibriunl in the presence of a static uniform field tlw 
magnetization can be calculated in the grand canonical ensemble whew t.he 
rxpwta%n value of any operator is defined by 



436 KADANOFF AND MARTIN 

Here, x and X are the Hamiltonian and number operators. The trace is a diagonal 
sum over all states of the system with all possible values of the energy and the 
particle number. The parameters p and ,8 are respectively the chemical potential 
and the inverse temperature (in energy units). 

In calculating the effect of a magnetic field which is independent of r, we apply 
Eq. (45) to the case in which the Hamiltonian is the Hamiltonian in the absence 
of the magnetic field, F& , plus the magnetic energy -iY J &M(r). The density 
matrix p, can be expanded to first order in the magnetization since the total 
magnetization commutes with both P& and X. In this manner we obtain 

where pCq. is the density matrix with no magnetic field 

Since the magnetization must vanish when there is no field, 

(M) = OHtr [pCq. M(r) /” dr’M(r’)] = ,BIl(A!fb-) 1 dr’ Jt(r’)j 
eq 

,, 

the susceptibility is6 

(In writing Eq. (46a) we have taken advantage of the fact that, for equal times, 
the magnetization at one point will commute with the magnetization at anot#her 
to replace M( r’)M( r) by the more symmetrical combination >${A[( r): M( r’)} .) 
Using the fluctuation-dissipation theorem in the form (43), we may rewrite 
Eq. (46a) as 

(46b) 

Let us compare this thermodynamic form for the susceptibility with our previous 
result 

The positive definite integrand in (46b) is greater than or equal to the positive 
definite integrand of (26) and the two expressions are equal only at u = 0. It 

6 This expression was first discussed by J. Kirkwood (14). 



therefore follows that x”Ck! U)!C,J must be x-ery sharply peaked about zero 
frecluency.’ This sharp peaking of x” 1 j CA is predicted by Eq. ( 20) according t’o 
which X” ti becomes a delta functiou at zero frequency as k goes t,o zero. Alore- 
o~-er the integral conservation law 

implies that the k = 0 part of the auticommutator can on1.y coutain zero fre- 
queucy compoueuts. Thus, the frequeucy integral in (-Hit) I can only mntrihutc 
at, exact,ly zero frequency and expressions (46b ) alld (26 ) are comp1etel.v COII- 
&tent with one auother. 

,Spiu transport is particularly simple because it’ is described, in the ll.ydro- 
dynamic limit, by a simple diffusion equation. lcor most systems, however, the 
hydrodynamic equations are more complex. This is because there is one transport 
e(luation connected with each differential conservat’ion law. lcor a one-component 
Huid, for example, there is a conservation lalv aud trausport equation for the 
density of particles, rL(r, t), the momentum density, g( r, t 1, and tlw etwgy 
de~~si~y, CC r, f ). These conservation laws can be writtell as 

Cr tl 
!T rL(r, t’l + V.g * = 0 
at 

~iumh cwiisermt~io~t, t 4ia I 

g gCr, t) + V.TCr, t) = 0 niomwt~uni conservatiotl, t 4itb 1 

$ e(r, t) + V.j’(r, !J = 0 euergy conservation. t 4ic 1 

Here, j’ is t,he energy curreut density and T is t,he stress tensor, which ser~-es as a 
momentum current. 

Of course ECUS. (47) are incomplete in themselves. They must be supplemented 
with the assumption that when all variations in space and time are slow, the 
system cat1 be treated as if it is in thermodynamic equilibrium locally. Siuce the 
state of the fluid in equilibrium is characterized by the five conserved \:ariablw 
or five associated intensive variables we expect local equilibrium to be character- 
ized either by the local densities of the conserved variables nr by related spatially 

7 There are :I few cases known in which t,he limit :a k goes to zer~j of an int,egr:d like 
(46) is not equal to its value at, zero wave number. The most notable example of this pa~,ho- 
logical behavior is a system of particles int,eracting t’hrough :L Coulomb force, in which the 
l~mg-ranged interaction makes the limit of small w:kvc nun~bers peculi:lr. 
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and temporally varying intensive quantities. Conventionally these are chosen 
to be the temperature, pressure, and average velocity. 

We define an average velocity by writing the momentum density as 

Mr, Q) = Mr, Ohdr, G. 

We shall consider the case in which the deviation from complete equilibrium is 
small. We may further suppose that the complete equilibrium system is taken 
to be at rest and uniform. We may then write to first order 

Mr, G) = nmv(r, tl (@aI 

where n is the equilibrium density of particles. l?or a system of particles in com- 
plete equilibrium, moving with uniform velocity, v, Galilean invariance implies 
an energy current 

j’ = (e + p)v. 

When the system is in local equilibrium the energy current will generally contain 
a term of this form. However, if there is a temperature gradient in the system, 
there is an extra flow of energy from hot regions to cold regions. These two effects 
lead to an energy current of the form 

where E and p are the equilibrium parameters.* The coefficient K is called the 
thermal conductivity. 

Of course, the temperature which appears in (48b) is not independent of the 
other variables. Because the system is in local thermodynamic equilibrium, 
variations in the intensive parameters satisfy the usual thermodynamic rela- 
tions. Thus, a change in the temperature is related to changes in the density and 
energy density by 

* However, in a superfluid there exists more general modes of motion than this mode in 
which the fluid appears locally to be moving as a whole. The superfluid can sustain without 
appreciable decay the relative motion of its excitations (the normal fluid) against a sea of 
its condensed state (the superfluid). This extra freedom results in the local equilibrium 
situation being described by not one but two velocities: the condensed mode velocity v8 
and the normal mode velocity ZJ” . In this case, the energy current, neglecting dissipation, is 

where pS is the density of the superfluid (condensed) component. The inclusion of this 
extra degree of freedom of the superfluid changes the hydrodynamic equations and this 
invalidates all the main conclusinns of the present work. 



HYDROI)Y&-z4MlC EQUATION AND C’ORRELa4TION FVNCTIOXS 4:3!! 

To complete the set of equations (48), it is necessary to specify the stress 
tensor, T. I:or a fluid at rest in complete equilibrium the st,ress tensor takes the 
form 

where p is the pressure. When the fluid is disturbed from equilibrium, extra 
strrsses are produced as a result of viscous forces in the fluid. These forces are 
proportional t’o gradients of the velocity so that t’he full stress tensor may be 
written as 

Here 7 is called the viscosity and j+ the second viscosity or btllk viscosity. A1gain 
there may be additional terms in a superfluid. We shall henceforth ignore this 
possibility, restricting ourselves to normal fluids. Changes in the press~we, p, are, 
in a normal fluid, related to changes in the densit,y, energy density, and tempera- 
ture through the usual thermodynamic relations. Therefore, &IS. c 47 ) t,ogethel 
with Eqs. (48) form a complete description of the fluid. In fact, they are the 
linearized form of the usual equations of fluid mechanics.’ 

Xow, we recombine these equations in a form which is convenient for olw 
plwposes. With the aid of (48a) and (48~ ) j the momentum conservation law may 
be writt,eli as 

It is con\.enient to divide the momentum density int#o longitudinal and t,ransl*erse 
park, t#hat is, to write 

g(r, fj = gt(r, fl + gdr, f) 

where 
V.gt(r, i) = 0 

V X gdr, tJ = 0. 

With these definitions, the transverse part of t,he momentum satisfies the diffw 
sion equation 
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To get the remaining hydrodynamic equations, we take the divergence of (49) 
and use the number conservation law (47a) to eliminate g( r, t) . We then find 

The momentum density may also be eliminated from the energy conservation 
law which results from substituting (48b) into (47~). In this way, we find 

$ [ Mr, tl) - ‘+ (n(r, i))] - A%?(r, L) = 0. (5Oc) 

The analysis of the diffusion equation (50a) follows along exactly the same 
lines as the analysis of spin diffusion given earlier. We suppose gt(r, t) dies off at 
large distances so that we may define 

gt(k, z) = 1 dr lrn & e-‘k’r”Z’(gt(r, i)) 

We then find 

gt(k) = dr eCik’rlgt(r,O)) = mnvt(k). 

Equations (50b) and (50~) can be analyzed in a very similar way. We define 

p(k, z) = / dr lrn dt e-ik’r’iz’p(r, t) 

n(k) = / dr e-ik’r(n(r, O)), etc. 

We notice that we can guarantee that (h(r, t)/CU)tZo = 0 by taking the longi- 
tudinal part of u(k) to be zero initially. With this additional requirement, the 
transform of Eqs. (50b) and (50~) become 

im( -iz + DJc2) m(k, z) - L2p(k, z) 

+%z(k, z) 1 + &?!‘(k, z) (52a) 

= - c(k) - ‘3 n(k) 1 (52b) 



ii-here ve have introduced the abbreviation I), = ( 4:s~ + [ I,‘U;U fw the 
“longitudinal” diffusion coefficient. 

Kotice that ( .%I ) ilivolves the (luantity 

which is the change in the energy density minus the enthalpy per particle t,imes 
thp change in the number density. The response q(k, 2 ) and the correspolldi~~g 
operator, 

l\-ill play an important role in all that follows. To m&wt,and q, we IYV~II the 
thermodynamic relation 

TfiS = d& + pdlT 

which holds at constant, particle number, N. If (1N = 0, rve have t,he additional 
identities 

- cll’;’ l,r = fh)~n, 

and 

This permits LW to identify q(r, f) as an operator whose changes represeljt 7’ 
times the change in the entropy density. Thus, we shall call ~(r, i) the delwity 
of heat energy. 

We are, of course, permitted to use any convenient set of variables in a~la~yzillg 
JLis. (52). It will prove convenient to use thr matter density n( k, 2) CHICI the 
heat energy density q( k, 21. Because the syst’em L .* in local t,he~riio(l~~llal~l~(~ 
e(~uilibriurn t,he temperature and pressure can be wit,tett as 10 
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For the variables which characterize the initial conditions, it is convenient to 
use not q(k) and n(k) but the pressure and temperature defined by 

Written in terms of these new variables, (52) becomes 

(54b) 

Before discussing the general solution to (.54), we consider a particular simpli- 
fication which occurs at very low temperatures. As the temperature goes to zero 
the coupling between the mechanical variables (the pressure and the density of 
particles) and the thermal variables (the temperature and entropy) becomes 
very weak. The pressure becomes a function of the density not the temperature. 
Hence the thermodynamic derivatives coupling q(k, z) and T(k) into Eq. (54a) 
disappear. Similarly, the entropy depends more sensitively on the temperature 
than on the density or pressure; consequently the thermodynamic derivatives 
which couple n( k, z) and p(k) into (54b) vanish. In this case the solution to the 
equations is 

,&k,z) = -( -in+ DJi2) ‘$p(k) z2 - ;d$lc2 + izDLk2 1 -’ (55a) 

and 

y(k, z) = ; $ T(k) -iz + Kk2 ;$ 1 -‘. 

Equation (,55b) states that the temperature satisfies a diffusion equation 

$ T(r, i) = DTVzT(r, t) 



for f > 0, with the thermal diffusixrity given by 

for t > 0, with the sound velocity c given by 
2 me = dp:dn. 

alld the sound wave damping constant 

r = D,. 

By examining the solutions to Eqs. (~54) in the general case, we see that sound 
propagation sari be isolated from heat diffusion whenever /i is SO small that 

( DTk2)2 << &,.‘, 

lpor these wavelengths the solutions to (54 j, omitting only terms of ordw 
( DTL, ;c)‘, are 

where c,, aud cP are the specific heats at con&ant vohune and ~IXWUIY~ 
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In this more general situation, the sound velocity is given by 

while the thermal diffusivity and the sound wave damping constants are 

DT = K/nxcp (59) 

r = Dl + &LCcp/cc) - 11. (60) 
B. CONSTRUCTION OF DISTURBANCE FOR CORRELATION FUNCTION DESCRIPTION 

Before we can use the solution for the hydrodynamic equations that we have 
just derived, we must look into the following conceptual problem. We wish to 
compare the previous description with a description in which we mechanically 
displace a system from equilibrium in such a way that all variations in time and 
space are slow. In our discussion of spin diffusion there was a very natural mecha- 
nism by which this deviation from complete equilibrium could be mechanically 
induced. The spin magnetic moment could be altered by applying an external 
magnetic field. There exists no such handle for the molecules in a fluid. In par- 
ticular, the mechanical forces by which a heat conduction process is set up are 
rather subtle. 

Now almost any force which disturbs the system from equilibrium will set up 
heat conduction and sound propagation processes, and if we wait long enough, 
these will be the only modes we will generally find. However if we are to infer 
the form of the correlation functions from the hydrodynamic equations, which 
are only true when the system is in local equilibrium, we must apply a disturb- 
ance which guarantees that the system is in local equilibrium at all times, not 
just for long times. That is to say, we must select an interaction Hamiltonian 
which disturbs the system in such a way that. the system is even in local equi- 
librium initially. 

To aid us in choosing such a mechanical disturbance, we recall the method for 
computing the average value of an operator, A ( r, t), in a system in full equi- 
librium. If the system is moving with a velocity v, the average of A in the grand 
canonical ensemble is 

p = exp E [Tr exp E]-r 

E = -/3 [3co - &J-t + $4 w1v231t - / drg(rbv]. 

(611 

The thermodynamic state of the system is described by p, @, and v. If the ve- 
locity is small, the v2 term in (61) may be neglected. 



= 0 for f > 0. 

to wpwse~~t, a situation in which t,he system is iu local t~hermodynamic e(l uilihriluu 
for all times less thaIi zero. We would, of course, guess that t,he local \.elocit> 
\~ould he 6v( r ), the local temperature T + 67’( r) alkd the local chemical po- 
tellt,ial h + &AC x-1. Tf we can show that the system is itt local thermodywtmic 
e(~uilihrium for times less than zero, t’hen we cali IW (63 I as au illt,rractioii 
Hamiltouian for producing hydrodynamic flow. 

‘ro just’ify the use of (63 ), we must prove that for all times less than zero, the 
average of aiiy operator A (7: L) changes from its complete e(]uilihriImi \AIW 
h,v the LLInoul1t~ 

‘l’he dwivat,ixw indicated in ( 64 ) are, of course, thermodynamic derivatilw. 
‘l’he proof of (64) is essentially idenGca1 with the proof (ill Sectioii II, (“1 

that, linl,CA,, X( 1,. j is the thermodynamic derivat’ire cIN/c/FI. b’or simplicity, w 
consider the case in which &3 = Jv = 0. We write a spectral form for thr AI - // 
conlnll~tato~ 
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We can calculate t.he thermodynamic derivative aA/b’p from Eq. (61), obtaining 

It is of course implicit in writing this equation that the static correlation func- 
tion has no long range part or that the integral converges. This is not the case 
with aA/&, or {A, U} in a superfluid. Apart from such exceptional situations, we 
may write 

aA I - 
ap T,tl = 1 ‘;; coth ‘; &(O, w). 

Since the total number of particles is independent of time x2,%(0, w)/w must be 
just a delta function at zero frequency. Therefore, just as before, we can make 
the replacement 

and find 

We can use Eq. (12) to calculate the response to the time-dependent dis- 
turbance (63). Then, in just the same way as we obtained Eq. (15), we find 

dw x;nOc, w) 
8(A(r, t)) = 1 g3 p(k)e’k’r 1 ; for t 5 0 w 

where p(k) is the Fourier transform of Q.L( r). Thus A(k), the Fourier transform 
of s(A(r, O)), is 

If &~(r) contains only very small wave numbers (or equivalently, varies slowly 
in space) then the k which appears in (66) may be replaced by 0. A comparison 
of (65) and (66) indicates that 



JII t,llis uxy \VCJ can verify that Eq. (64) is \ralid whenever &L( r 1, 67’~ r 1, and 
&(r J ~:wy sufficiently slowly in space. In the limit of slow j.ariatiou, the system 
appears t,o be ill local thermodyumic equilibrium and p + &A( r 1, 7’ + G”( r I, 
h( r 1 are just t’he local chemical potential, temperature, and \.elocity. 

This is, however, a weak link in this derivation of (N 1, namely, our ass~mlp 
tiotl that 

‘l’lww aw sittlations in which k = 0 is quite difleretlt from all k # 0. ‘I’his difI’et.- 
~MT will appear wheuever there are illfinitely long-ranged correlations. These 
correlat,io~~s tend to affect k = 0 modes very diffewutly from k # 0 ones, Thus, 
for example, ill a Coulomb system, the exact shape alld nature of the wrfaw 
will determine the behavior of t,he plasma oscillat8ioll at k = 0. Also, iI1 a super 
fluid, the surfaces and past history of the body will determine the relat’ive 
pwpo&)lls of superfluid and normal flow at, k = 0. This ef!fect appears because 
of the iltfinitely long-ranged correlations ill t,he supeAuid cornpo~le~~t. W~IIS, 
in thew cases, ECU. (6-l I fails to be correct. 

lCor tlw purposes of t,he above argument, the chemical potential, the tempetw 
twe, and the velocity were a coll~e~lient complete set of variables. HOWLTI~, 
the chemical potential does uot ha\-e any direct physical meaning in the OIW 
component system. Consequently, it is more convenient to eliminate the lwal 
chemical potential in favor of t,he local presswe by usitlg t,he t,he~~~~~o(lyl~a~~li(~ 
wlatioii 

To SW that p(k) has t’he significance of a change in the pressure iu the limit of 
slow spatial variation, it is o&v necessary to use the thermodynamic wlatiotl 

64 J as 
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Then, if vve use (67b) to define 

we have 

so that @(r) does indeed have the meaning of a change in the pressure. 
Finally, we eliminate &.~(r) from the disturbance (63) by making use of (67b). 

With this substitution Eq. (63) becomes 

for L < 0, (691 

c 0 for t > 0, 

where q(r, t) is the operator previously encountered which represents changes 
in the density of heat energy 

~.REPRESENTATION OFTHE COMMUTATORS 

We can now write the response of the system to the disturbance (69) as 

a(A(r, t)) = 11 di 1 dr’e”’ { } for L < 0, 

0 

z 
1 1 

dt dre”‘{ 1 for t > 0 
-m 

where 

We introduce the representation (42a) for the commutators, the Ai being q, n, 
and the components of g. For times less than zero, we then have 

A(k) = / 8(A(r, t))eCik’r dr 



F’or times greater than zero, t,he response may be represented 1)~ 

A(k,z) = [- ~0e”~ [ cIreC’k’r6(.4Cr, /I) 

We arc ittterested in the cases in which A ( r, f 1 is TLC r, tj, q( r, i), or g( r, / I. 
Therefore, we shall briefly discuss the pr~JpeitiI?s of t,he P’ourier transforms of 

t,he commutators formed from these conserved operators. By using time-reversal 
itivariaiice, rotational invariance, and the Herr&&t nature of the operators, 
one can show that x:,~ , x& , xZ,@ and x,:,?~ are each real odd futt&otls of U, 
&Id dlatf 

x:,qui cdl = x;,,,uc, cd). t i2 1 

P$ttatiott (i?) expresses a reciprocity which was first discussed by Ottsaget 
( /6’ ). l~rom ( 71 1 and (72) it follows that the response of’ t,he density to a change 
it1 t,he t,emperature (at constant pressure) differs by only a factor of n from the 
change itt t,he entropy density induced by a change itt the pressure c at cottstattt 
temperaturr 1. In more comples &uaCons than those we shall consider here, 
iAs reciproc4y leads to a conttecGon betweet trattsport coefficients lfhictt would 
ottterwise have tto obvious relation wit,h one another. 

The l>ottrier transform of the commutator is a t8ettsor, 
sitwe it is an average of a direct, product of tw) \.ect’ot-s. However, the ott1.v 
&ttsor (~uanWes of which x:,,(,~( k, CO 1 could be composed, in the absettw oi 
long-range correlaCons, are the direct product L,,k, and the unit mat,rix 6,. I . 
FVe fittd it, convenient t)o express x:<.~,, in terms of linear combina~iotis of these a? 

lferc the 1 attd t &and for longitudinal and txattsverse since the splitting that 
we ha1.e indicat,ed in (73 1 divides t’he tensor into two par&, one wilJ1 compottettts 
in the direction of /c, the other whose dot product, wit,h L, is zero. IMl part,s at.<> 
real futtctjiotw, odd in the frequency variable. 

‘l’lie cotiser~~at~ioti laI$ 
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while a double application of this law gives 

One more result of the number conservation law is 

(751 

(76) 

D. SUMRULES 

By comparing Eqs. (70) and (68) we can deduce a variety of Kramers- 
Kronig relation sum rules analogous to Eq. (26) for the integrals of the various 
commutators. For example, we may take A (r, t) = n(r, i). Then Eq. (68) gives 

so that Eq. (70) implies 

For A (r, t) = q(r, t) we find 

For A(r, t) = g(r, t) 

so that Eq. (70) implies 

and 



b’ittally, hy using the fact that, ihe heat curret~t, is zero even whets the system is 
in mot,iottq it, is possible to show that, 

Hy usiltg t’ltc conservation laws, lve can de1iL.e from this tvlatiott tlte sttm VI&~ 

Since I*:c~. ( 68) is only valid for small /<, t,he sum de (77 I need only IW valid 
in t,his limit. However, not all of t,he identities are really subject to this tv- 
skictiott. Eqttatiott (77f’), which espresses a sum rule on t,he dettsit.S--dettsity 
cot.relaCott fut&ion is, itt fact, valid for all A,. This sum rule can he det,ivp<J front 
att atgumettt idettGca1 to the one that, we used t,o get (27’). That is to say, this 
rpsttlt, is a cottsequeuce of the exact commutation relatAtt 

kvhiclt holds \vhetlever t,here are velocit’y-ittdepettdetlt forces. In fact, the stttu 
rule c iif) is a famous result. In solid st,ak physics, it, is usually referred t,o a~ 
the lottgitudittal ,/‘-sun1 rule. It has played a very important role itt t,he discussiot~ 
of the I-K’S t,heory of supe~cot~dlt~ti~it~.” Iti tt~~~t~t~ott scatteritg stltdies, it is 
ktion~ti as Ote Placzek sunI rule (3). 

Itt the classical limit, subject to the existettcc of the velocity correlatiott fttt~(*- 
t,iott l~outier bansform or the absettce of lottg-rattge order, (77e) is also exact 
for all A,. It, is a stat,emetlt, of t,he vast Ixeu\vetl theorem that the ort)ital tnag- 
tietic suscepCl)ility of a classical system vattishes. 1,attdau ( 18) has discussed 
how diamagtteGc suscepCtSlit,y catt, in fact! appear it1 a cluatjttttn mechat~ical 
system. III our language, this is a cotlse(iuettce of t,hc fact that 

catt cotttaitt a term of order /i’ in the limit of small /c’. 
The ~~ttattt,utn effects are even more drastir iti a superfluid. Itt a superflttifi 

(77e) is ttot eve11 satisfied in the limit /,,’ + 0. This failure of the sum rule is 
refleckd itt the anomalous electxomagnetic ptvpet+es of the superconductor, 
the Meissuer eflect and the persist,etxe of supercttrrettk and in the correspottditlg 
properties of liquid helium. The soutre of this failure has been indicated. 111 
superfluids, tort-elation futlct,iotts which involve the momentum die off too sto\\ 1~ 
NIL space tx) pet*mit t,he analysis we have employed. 

The sum rub (77a) is parktlarly ittteresting sittee it is an additiottal sttm r111fs 
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on the density-density correlation function, a function which is very important 
both experimentally and theoretically.” 

An alternative, and very useful, expression of these sum rules is given by 
taking the limit as z goes to infinity in Eq. (71). Then if A is n, q, and g, we find 

lim - &(k, z) = p(k) 
2-m 

(“‘) 

lim - izq(k,z) = p(k) 
z+cc 

+ T(k) [mncp + 8 (;)I + k+v(k)o (;) ““) 

Notice that these expressions agree, as they must, with the results of our hy- 
drodynamic analysis as given in Eqs. C.51) , (56), and (57). 

E. Low TEMPERATURE FORMS FOR CORRELATION FUNCTIOYS 

The hydrodynamic analysis led to particularly simple forms for the correla- 
tion functions in the low temperature limit. (See Eqs. (*55a) and (.%b) .) The 
response q( k, z) had no term proportional to p(k) and was proportional to 7’(k). 
By comparing (%b) and (71), we see that for 2 in the upper half of the complex 
plane 

cl u’ x:,q (k, a’) 
- 
7ri f.o’(cd’ - 2) 

we find the same diffusion structure for this heat-energy correlation function as 

12 This sum rule, of course, expresses information about both the commutator and the 
anticommutator of the density. In its anticommutator form, this result was used by 0rn- 
stein and Zernicke in their classical work on critical fluctuations. It has been more recently 
employed by J. M. Ziman (1Qa). The commutator form has been known to the authors for 
quite some time. It was discussed by N. D. Mermin (1Qb). It has more recent,ly been 
stressed by U. Pines. 



we found for the spin density correlation function, namely, 

( See? for comparison, IQ. ( 19 I.) 
1~ the low temperature case, the response of the density is also simplr sinw 

it contains, according to (%a), no term proportional t,o 5”( k) but 011ly a term 
proportional to p(k). By comparing (%a) and (71) we see 

ajld colw(~uent~ly 

Equations (81) and (82) give the density response iti the limit of small A,. 
But, hecause the density correlation function is such an important ~~ual~tity 
both experimentally and theoretically, it is worthwhile for us to examine some 
of the general properties of this function. Our analysis in this case closely parallels 
the establishment of a dispersion relation for MC k, 2 ) in section I3 of the chapt,er 
O~I spill response. In analogy with this work we define 

and not.& tfjat the facts 

imply t.he dispersion relation 

When 2 lies just above the real axis, we have 
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This result should be compared with Eq. (38) which gave the spin response as 

4,rnu’x( k) 
nkz-f2 - 

(38) 

In the spin case, j”(lc, w) reduced to w/k2DM in the limit as the wave number and 
the frequency went to zero. Therefore, we decided to define a frequency- and 
wave number-dependent diff usivity by 

.riw,dk, w) = w/k%w(k, w). (391 

In this sound wave propagation situation, Eq. (81) implies that for small k’, 

1 1 1 --zx 1 dP - ,mw2 ----- 
xn,&, w + 4 xvzO4 xm+(k, w + ie) - n dn nk2 

iwF z. 

Therefore, we can write the spectral weight function which appears in (84) as 

with the knowledge that for low temperature systems ~‘(k, w) reduces to the 
sound wave damping constant, F = D, , in the limit as the frequency and wave 
number go to zero. With this definition the spectral function of (84) becomes 

Consequently, an exact form for n(k, 2)/p(k) is 

and 

(n/m)r(k, w)k4w 

We should emphasize that the equations (85) and (86) are exact. However, 
whether or not these equations are useful depends critically upon the simplicity, 



or lack thereof, of the function l? (k, U) . Iu the particular case of a low tempera- 
ture ordinary fluid, we have seen that the ecluations of fluid mechalks imply 
that l7( l<, GJ) goes to the constant I? for low frequencies and small wave uumhers 
with u - CL. aud also that x~~,~~(/,Y) + TL(@ir/ajY’. However, at uotlvanishil~g 
temperature I’(/<, U) depends on the manuer iu which u and /i approach zero, 
sauce xz ,I> C/C, CL ) must include the thermal diffusion process iudicakd iti c .jfi ). 
That. is tJo say, I’, like x”, has different limits, depending OII the ratio of u atd /; 

as t1w.y hot11 approach zero. Specifically it cali 1~ shower that,j’( A,, w ) has a term 
whicli lwliaves like 

for small A, alld CA 
We next comment further on the significance of the function .I’( A,, ti 1. 

\$‘e observe t’hat the part to which we have just referred has poles at 
W = +iIj~(Ct~ 'C[.)k' = =tz’( K,/PwL)~’ correspondiug t’o relaxation as a result of 
thermal rouducCou. In addition, the function ,/‘(A,, W) co~ltained the term which 
at Iow frequencies became mwI’x/rz. This term vanished at, high fre(~~wliciw. 
i3oth terms are consistent with a form 

C’o~lverseIy, such a form would give rise to au expwssion for J,~ ‘( /;, 2 1 

\vhich could 1~ rewritten for 2 in the upper half-plajw as 

The form we haye hypothesized therefore corresponds to a weighted distrihutiou 
of relaxation times, T. Experimental evidence (~0 1 seems to indicate that, at. 
least this complicated a form is reyuired. Such a form would be obtained if thp 
fmlction ,/‘(k, w) could be calculated and if its aualJrtic continuation ink) tJhp 
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lower half m-plane only possessed poles, or a branch line on the negative imagi- 
nary axis. Generally, however, there may be both real and imaginary parts to the 
singularities of j”, and therefore of continuations of x-‘(/~, z) into the lower half 
plane. Under these circumstances j” contains a distribution of resonant fre- 
quencies as well as a distribution of relaxation times. 

Finally we remark without exhibiting details that the phase representation, 
which is convenient for carrying out stationary phase asymptotic evaluations 
of x-‘( Ic, z) , in the general case reduces to 

(wZ - c2k2)w2 w cot 6ckJ w) = $ D#z$[l - (cu/cp)](J - CZkZ) - (cv/cp)rk2w2 
and in the low temperature limit to 

w cot 13(/?, w) g (c2k2 - w’)/rk’. 

F. EVALUATION OF THE ABSORPTIVE SUSCEPTIBILITY 

At higher temperatures, n(k, 2) and q(k, Z) as given in Eqs. (56) and (57) 
contain both sound wave and diffusion poles. By using the same device as be- 
fore, we can calculate the absorptive susceptibilities which describe the long 
wavelength, low frequency response in this more general case. From (56), (57), 
and (71) we find, for example, that for T(k) and v(k) equal to zero 
ordinary fluid 

an 
=TpT 

[l -~cu/cp~l a-k2w + n e wc2k4r ( cu/cp) 
w2 + (D&z)2 ap F (w2 - c2kz)2 + (cJc~I’)~ 

dn 
-Ygh 

DT[l - (cV/cP)] (w2 - c2k2) uk’ 
(2 - ~w)* + (wkv)z . 

Similarly we find that 

and 

x:dk ~1 = 
nmcpT DT k’w 
wz + (DTk2)2 

x:,&c, ~1 = g ip [w2 f$;k2j2 - 
DTk2w( to2 - c2k2) 

(w2 - ~2k2)~ + (dk2)2 1 . 
Finally, from (51), it follows that 

xtn(k, w) = 
&w 

w2 + (71k2/mn)2 ’ 



FYe calI sum up our results as f01low~. s- In the low wave number, low frequency 
limit, t,he correlation function composed of the transverse component of the 
momentum exhibits a diffusion structure with diffusivity, Dt = T;‘WZ~L, give11 by 
the viscosity divided by the mass density. The heat energy-heat energy correla- 
Con function also has a diffusion structure but here the diffusivity is the t~hermal 
diffusivky, IIT = q mnc,, . The density-density correlation f~mctio~t exhibits 
both t,his diffusion process and a damped sound wave propagation. The total 
weight of x: ,rz, w is /L ( Q,/~/L) T of which a proportion C 1 - c,. cP I comes from 
t,he difftGon process and a proportion ct.! cP comes from the sowid propagat,ioll. 
The heat eliergy-density correlation function also reflects both processes 1111t 
the so\u~d propagation contributes negligible weight, to xt.,, U. 

G. lk~R~ssroxs FOR THE TRAKSPORT COEFFIVIENTS 

In this section, we derive expressions for the transport coefficients: the thermal 
colldu&vity, C, the viscosity, 7, and the l~ulk \Gcosit,y, (. The expressiojw WC 
derive are K&o-type formulas in that they relate the kansport coeficients to 
correlation functions formed of the currents of the conserved operators, The 
argumel~t t,hat we use is essentially ident,ical to t,hat used iI1 deriIil)g 151. (4-l 1. 
In that situation, we started from the fact that the spill diffusion coefficict~t, 
obeyed 

lim 
L 

lim U 
a-0 k-0 Fi &.MU~, cd) 1 = I1 M x-w, 11. 

We the)1 applied the spin conservat.ion law t,o find 

-4ccording to RI. (87b), 

Therefore, the thermal conductivity can be expressed as 

However. according to C 87a 1, 

so that 
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and also, according to (87c), 

Therefore, not only is the thermal conductivity given by expression (@a) ; it 
is also given by the much more general expression 

K = ~~~~~~~~~~~~~-~k’r+~~~ 

1 
(88b) 

X lb%-, tl + %Cr, ~l,.LY%Ol + h7d~,~~l~ 
where A is any constant. The choice A = (E + p)/(m?L) is particularly instruc- 
tive since 

where j’ is just the energy current. With this choice of A, the thermal conduc- 
tivity can be expressed as 

The fact that the thermal conductivity can be represented by either expression 
(88a) or expression (88~) sheds some light on an apparently puzzling relation 
between the work of H. Mori and M. S. Green (21). Both authors worked with 
hi = 0 from the very beginning of their calculation. Mori used the grand canonical 
ensemble and found a result of the form of (88a) in which the thermal conduc- 
tivity is expressed in terms of a correlation function formed with j*‘s. Green 
used the microcanonical ensemble and found that the thermal conductivity 
could be represented in the form (88c), in which the correlation function was 
formed from energy currents. The difference between their two results and Green’s 
explanation of it is rather disturbing since it seems peculiar to ascribe signifi- 
cance to a correlation function whose value depends upon the ensemble used. 

Our result complements the results of these two authors. We do not begin 
with the case in which /C is truly set equal to zero since, in this case, not all cor- 
relation functions are well defined, and it is true that some depend on the en- 
semble. The hydrodynamic equations manifest this ensemble dependence through 
their strong dependence on initial conditions in time and boundary conditions 



at, the edges of the container in which the system is enclosed. Holvever, the 
hydrodynamic equations indicate that so long as 1,/k is much smaller thau a 
linear dimension of the container, these complications are irrelwaut. As we 
might, expect physically, we can miambiguously associate a transport coefficient, 
with a spontaneous fluctuation function whenever t’he spontaneous fluctuation 
functiou is physically well defined and ensemble independent,. This is t)he case 
whelle\w 1 L, is much smalter than a container dimension but larger thaIi at~y 
possible microscopic length. The evaluation of the physical functJiolls ill the 
limit A 3 0 is therefore assumed to take place after the wlltainer walls ha\.fl 
receded t,o illfinity. The limit as /, -+ O7 wheu the volume is kept tiliite, is e11- 
semble depeildent’ in a manner which we can uuderstand from t’he hydrodyt~ami( 
e(luatiolw both mathematically and physically. The choice of a correct ensemble 
alld current, when k * 0 first is in fact dictated by the rw~uirement t,hat, the 
elwemble and current yield a result ill agreement with the ensemble indepwlde~~t 
limit appropriate for 1. -+ = and then A, * 0. ITnder these circumst,auces, o~u 
analysis of the hydrodynamic equations indicates that the thermal conductivity 
call be expressed in terms of correlations of either j’ or jq. AIori’s alId ( ~IWII~S 
disc~wiotls each present an ensemble and a rurren~, for which no error resmelts 
from the unphysical limiting process. 

lCinally, we indicate that we cau obtain the standard K&o-type expressio~w 
for the viscosity by employing the facts that’, from (187dj 

Thus, 

Applying t’he same arguments as before, we find that the viscosity and bulk 
I-iscosity may be obtained from the well-known correlation function exprewioj> 

where 7 is the stress teusor. 
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APPENDIX A. PERTURBATION THEORY 

In this appendix we remind the reader of the expression which results from 
using time dependent perturbation theory to describe the effect of an external 
disturbance. We suppose that prior to time &I the state 9 is a stationary state of 
the time independent Hamiltonian H. Subsequent to t0 an external disturbance 
is applied which couples to the observable properties, Aj( r, t), of the system. 
We describe this disturbance by an additional term in the Hamiltonian 

3c ext = 
1 

dr x Aj(r, t) uJr, t) . 
j 

The functions uj (r, t) represent the generalized external forces. For example, 
the observables might include components of the magnetization, in which case 
the corresponding force uj would be the components of the external magnetic 
field. To calculate the expectation value at time t of the observable A; we must 
calculate 

WG, AFCr, WCOL (Al) 

where q(t) is the Schroedinger wave function which was equal to * for t < to 
and Ais(r, t) is the operator in the Schroedinger representation which char- 
acterizes the observable. Time dependent perturbation theory may be generated 
by introducing a wave function @(t) at time to which would have become S’(t) 
if no external perturbation had been applied, that is, 

q(t) E fyiH~t-t~JD(~). 

From the Schroedinger equation we obtain 

i&D/dt = e if+h&fxt( t)e-i~(+b)$,( t) 

@(t) = *(to) - iIt dt’H:&‘)cD(t’) 
to 

L4.2) 

where for any operator O’(t), the corresponding interaction representation 
operator is defined by 

oI(t) = edH~t-to~os(t)e-iH~t-to~* 

The formal solution of Eq. (A.2) is 

ip(t) = e-~wt-w (exp [-i ll chfHzxt( ()I)+*( to) (A.3) 

where the formal expression, the ordered product in brackets, is defined by the 
power series generated by iterating Eq. (A.2). For later purposes we note 
that direct integration of the equation for * yields the alternative equivalent 



- -~fr~t-~,~~ e~p - i r j H<tx+c f' J df' . 1 0 1 + 
lndeedT it, is for this purpose that we have generated the perturbation series ill 
terms of states instead of developing it for the density matrix dir&ly. Substi- 
tuting into (11.1 j we obtain 

By expanding the exponential we obtain the result to any desired order. In 
particular, if we expand to first order, and denot’e by a bracket the average over 
au ensemble of stationary states at time &, , we deduce 

If the observables are not explicitly time dependent in the Schroedinger repro- 
sentation, the operators A1(r, t) are the Heisenberg operators for the Hamil- 
tonian H. We shall henceforth assume that this is t’he case and omit the super- 
scrip& I. In terms of the absorptive susceptibility, defined by 

alld the iutegral representation of the step funct,ion 
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We finally obtain 

li(AJr, t)} = x jrn dt’ [ dr’&(r, r’; t - t')uj(r', t'), (A.71 
j -0z 

where %ij(r, r’; t - t’) is the Fourier transform of the complex susceptibility 
xij( r, r’; CO) and 

xij(r, r’; w) = Xij(r, r’; CO) + iXTj(r, r’; 0~) CA.81 

is the boundary value as z approaches u on the real axis from above, of the 
analytic function of z 

xij(r, r’; 2) = 
dii xfj(r, r’; G) -- 
7r ii-z - 

APPENDIX B. SOME PROPERTIES OF THE COMPLEX SUSCEPTIBILITY 

1. SYMMETRIES 

In the text we noted the symmetry properties of xyj for a spatially invariant 
system (that is for a system invariant under rotations, translations, and in- 
versions) when A i was the same as Aj . We summarize here the more general 
symmetry properties.13 

(a) Since gyj is a commutator, it, is antisymmetric under interchange of r 
with r’, i with j, and t with t’. We therefore have 

grj(r, r’; t - t’) = --gTi(r’, r; i’ - t) 

xTj(r, r’; U) = -xyi(r’, r; -CO). 
U3.1 J 

(b) The fact that gyf is the commutator of hermitian operators leads to the 
identity 

[&(r, r’; t - t’)]* = - [&( r, r’; t - t’)] 

Xyj(r, r’; w) = -xfj*(r, r’; -6~) = $F(r, r’; w). 
(B.2) 

Thus the part of xyj( r, r’; U) which is symmetric under interchange of i with 
j and r with r’ is both real and odd in ti while the antisymmetric part is imagi- 
nary and even in CO. These statements imply in particular that if xii(r, r’; U) 
is spatially invariant it is real and odd in the frequency. 

(c) A similar ‘result applicable to different operators follows from time re- 

I3 It should be noted that all properties of the system are defined in terms of commu- 
tators. The corresponding classical relations can be obtained by using the equivalence of 
the commutator with the Poisson bracket multiplied by i in the correspondence limit. 
Obviously, this leaves the various symmetry properties unaltered. 



wrsal. Siuce t’he time reversal operator, T, has the property 

(7w, mj = (a,*), 

C’o~lsequently whenever the Hamiltonian and the ensemble of states aw ill- 
variaut under time reversal 

This meaus t’hat if A i aud A, have the same signature under time ~PITMI~ 
xyj( r, r’; ~1 is odd in q real, and symmetric under interchange of i wit,h .j a1~1 
r with r’. If they have opposite siguature, x:1( r, r’; ~1 is even, imaginary, a,11(1 
autisymmetric. 

If the Hamiltonian and ensemble iuvolve a magnetic field or some othw 
property which changes sigu under time rwwsal, theu the relation 

is obtained. Hence for two operators with the same signatlu-e under tim(l IY- 
versa1 t’here will be an additional part of xyj( rY r’; &I which is odd in the firId, 
B, wcm iii U. imaginary, aud antisymmet’ric in zI, r and ,j, r’. 

The symmetry properties of x; ;( r, r’; CA; B) are d&rmiwd from the rel:itioll 

which means that they are identical apart f~wm the interchange of WTIIIIWS 
and oddness iu a. 

2. ~I:M ~<ITLES Am AIOMEXT EXP.~NSION,~ 

Thp moments sun1 rule discussed in the text is tile first of a wquenc~ of stat(l- 
I~wllts 
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expansion, valid at high frequencies, 

3. IDENTIFICATION OF x" WITH DISSIPATION 

The rate at which mechanical work is done on a system by an external force is 
equal to the explicit rate of change in the Hamiltonian 

r, r’; t - t’)uj(r’, t’) dt’ dr dr’. 

The mechanical dissipation (which is equal to the entire dissipation at constant 
entropy) is obtained by integrating this expression over time. 

/dW = x[dr/ dr’ui(r, t) [a z xij(r, r’; t - t’) 1 uj(r’, 0 dt dt’. (B.7) 
i.j 

Since ax’/at is antisymmetrical in time and axn/at is symmetrical, only af/at 
contributes to the dissipation. Alternatively, for a single frequency of applied 
field 

Hext(t) = -1 dr F Ai(r, t) Re ui(r)eviwt 

and the mean value of the work done is 

dW -c 
dt 

-k Re x / dr dr’ui*(r)iqij(r, r’; m)uj(r’). 
ij 

Since X’ and x” are both hermitian the average comes only from xyi 

dr dr’ui*(r)&(r, r’; co)uj(r’)m. (1~23) 

We may also write this expression for the rate of energy exchange as the energy, 
W, times the difference between transition probabilities for absorption and 
emission 

= i x 1 dr dr’ /” dteiU’ui*(r)([Ai(r, t), AJr’, O)I)uj(r’) 
$1 

= u 1 dteiut / dEw(E) [ dE’p(E’) 



where p( A”) is the density of states of the Hamiltonian, alld ,w( A’) the jwrmaliwd 
weightiug of states of the stationary ensemble. In writing this equation and the 
subsequent equations C B.9) and C B.l4), we have assumed that the states n1a.v 
tw labeled by the energy alone, that is, that there is no degeneracy. Wheel tlw 
states are degenerate, these equations should iuclude averages over st#at,es of 
identical euergy. This exka averagiu%g process chauges ilotw of our conrlusio~w. 
WC> therefore obtain 

The rate of change of mechanical energy may of course be associated wkh the 
rate of change of free energy iu an ensemble at co&ant t,emperatuw. Since t,he 
matrix ~Y!c,J describes the dissipation it must he positive definite iu anv stat)k 
skystem. This positive definiteness of c,&\ ( r, r’; w ) has implicatious for iijt r, r’; 
CC 1. Ilk particular it follow from Eq. ( B.4 1 that xi,( r, r’; a) is a twuwSgat.ive 
matrix at vatlishiug frequency. Hence, for example, the stat’ic electric polariza- 
bility must be positive. Likewise, for the one-componeut fluid discussed ill the 
t,ext, this requirement reduces in the long wavelength limit, to the familiar 
thwmodynamic stability couditions (~!p~/dn,)~ > 0, cP > 0, and (dp, c/?[ J? > 0. 

Kate also that at large frequencies the “s&u” of t,he matrix ~1~ is always 
llcgative. This behavior is just what we expect for an oscillator bomld t)y a 
ix&oriiig force nw,, ’ and perturbed by an exterilal force of fre~~~leiwy, a. Its 
displacem(~ut will be 180’ out of phase wit,h the force when ti >> w,; awl tlw 
absorption is sufficiently small so t,hat there is oscillation c t,hat, is, wl1~11 we ha1.t: 
att oscillator damped less than critically) ; also t,lw absorpt’iotl lvill be maximums 
at ati itlt.ermediate frequency when the displacement, is out, of phase with the 
i’o~*cr by !jO”. Although we shall not purslle the point., it, should br clear t,ljat iti 
t,hp wpreseu~ation in which xiJ( r, r’; LI J is diagotlaliwd, its logarithm gi\.es a 
natural definition for fre~~~~eilcy-depellde~~~~ phase shifk in precise analogy 
with the abo\re description and the phase shift, represe~ltatio~~ diwuswd ill 
comwctiotl with the dispersion relatiou for magnetic suswp6bility. 

4. FI,I~c:TI-.~TIoN DwjlPA-rrox ‘IYHEoREM 

The tinif> trauslation property of the weighting factor for a canonical (‘11. 
srmble a11d the c.yclical property of the trace imply the identities 

Tr ?*-l ;C r, t)A ;(r’, t’,) = Tr A j(r, t + ip)c?A j(r’, L’) 

= Tr e?A ,( r’, ()A ;( r, t + $). 
t B.10) 

AIoreowr Tr [exp ( -fiH)A (r, t)] is independent of t,ime. Consequently, pro- 
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vided the time Fourier transform 

>$i([AJr, t) - (Ai(r, L))][Aj(r, t) - (Aj(r, t))]) = / g f&r, r’; u)ewiu”-“’ 

exists, it satisfies 

and therefore,14 
fij(r, r’; CO) = fji(r’, r; -u)epw 

xrj(r, r’; CO) = (1 - eP”)jij(r, r’; w) = (epw - l)fji(r’, r; -m). (B.11) 

Likewise the transform of the symmetrized product 

satisfies the identity 

and the fluctuation dissipation theorem” 

1 
2 Sij(r, r’; C0) = U -. 1 xTj(r, r’; U) 

w 
(B.13) 

We may use the expression (B.8) for the dissipation and (B.13) to demonstrate 
that our statement of stability 

is satisfied by the canonical ensemble. For this purpose, with the aid of Eq. 
(B.13) it is only necessary to show that the fluctuations at a single frequency are 
positive definite. By introducing a set of intermediate states we obtain 

W = $5~ tanh >$$3w 1 (iEwe,,. / dE’p(E’ME - E + w) + m’ - E - co11 

I\ z ckui(r)[Ai(r, 0) - (AiCr, OI)l 13, 2 0, 
I i 

(B.14) 

where Wan. is the normalized distribution for the equilibrium ensemble. 

I4 This is the first relation in the appendices which depends on canonical averaging. 
We shall subsequently assume this particular density matrix. 

I6 Had Poisson brackets and classical mechanics been employed, this relation would 
have involved 2/& instead of coth @CO/~). 



In this final appendis we make explicit the connection of our discussion with 
the widely quoted peculiar looking dissipation function of Kubo. We also demote- 
st,rate how the latter arises directly in a discussion of relaxation and leads a- 
ternatively t,o the expression for relaxation discussed iti the text. \Ve recatl a 
familiar parallel. In classical electromagnetic theory me use the retarded C+reen’s 
function for the wave equation to determine the radiation emitted by charge 
molAng along prescribed trajectories. We also lwe this function to tilld ttw 
behavior of radiation iu free space in terms of the radiation present at, an il~itial 
time. The former corresponds to the chara&rization of the respotw to (lx- 
ternally applied forces. The latter corresponds to the relaxation problem we shall 
tww discuss. It would clearly he possible t’o cotlsider simultaneous1.v emissions of 
radiation by charges undergoing prescribed mot8ions and t,he propagatioil at~d 
al)sorpt)ion of incident, radiation present initiall,y. Likewise it would he possible 
t,o disclws a system relaxing to equilibrium and simultaneously s~~hjwted to 
external forces. Since there is no really new effect we shall confine ours~l~~~ to 

free retasation. 
We suppose that, initially the system is characterized by a disturbed densit,,v 

matrix 

Xote particularly that although we have again used the symbol H,,XC it hew 
describes an initial condition and does not depend on the time in any way. 
ITor times t > 0, a property A i of the system transforms according to 
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Taking into account the relaxation between the unordered products and the 
commutator (B.11) we obtain 

(C.5) 

Thus the Kubo expression (C.4) is a peculiar way of writing the ensemble 
averaged commutator, that is to say 

Since these expressions apply for t > 0 it is natural to introduce one-sided Fourier 
transforms as in the text and write 
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