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The response of a system to an external disturbanee ean always be ex-
pressed in terms of time dependent correlation funetions of the undisturbed
system. More particularly the linear response of a system disturbed slightly
from equilibrium is characterized by the expectation value in the equilibrium
ensemble, of a product of two space- and time-dependent operators. When a
disturbance leads to a very slow variation in space and time of all physical
(uantities, the response may alternatively be described by the linearized
hydrodynamie equations. The purpose of this paper is to exhibit the eompli-
cated structure the correlation functions must have in order that these de-
seriptions eoincide. From the hydrodynamic equations the slowly varving
part of the expectation values of correlations of densities of conserved quanti-
ties is inferred. Two illustrative examples are considered: spin diffusion and
transport in an ordinary one-component fluid.

Since the deseriptions are equivalent, all transport processes whieh oeeur in
the nonequilibrium system must be exhibited in the equilibrium correlation
functions. Thus, when the hvdrodynamie equations prediet the existence of a
diffusion process, the correlation funetions will include a part which satisfies
a diffusion equation. Similarly when sound waves oecur in the nonequilibrium
system, they will also he contained in the correlation funetions.

The description in terms of correlation functions leads naturallv to expres-
sions for the transport coefficients like those discussed by Kubo. The unalysis
also leads to a number of sum rules relating the dissipative linear coefficients
to thermodynamic derivatives. It elucidates the peculiarly singular limiting
behavior these correlations must have.

I. INTRODUCTION

Although the general nonequilibrium behavior of a many-particle systen ix
exceedingly complex, there exists a well-developed—and relatively simple
theory of nonequilibrium behavior for situations in whieh physical quantities
vary extremely slowly in space and time. The best known example of sueh a
theory is ordinary fluid mechanics. The full nonequilibrium problem involves
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420 KADANOFF AND MARTIN

virtually infinite complexity; on the other hand, the hydrodynamical limit is
simply characterized by five partial differential equations.!

The simplification occurs because when all physieal quantities vary slowly in
space and time each portion of the system is almost in thetmodynamic equi-
librium. Under these conditions, the variation in the system is completely de-
scribed by local values of the various thermodynamic variables—for example, by
giving the pressure, density, and veloeity as a function of space and time. The
basis of fluid mechanics is the partial differential equations satisfied by these
local thermodynamic quantities.

In these hydrodynamiec equations, there appear a variety of parameters whose
values are not given by fluid mechanies. These parameters fall into two cate-
gories. I'irst, there are the thermodynamic derivatives which arise because
changes in the various local variables are related by thermodynamic identities.
Second, there are the transport coeflicients like viscosity and thermal condue-
tivity which enter because the fluxes of thermodynamic quantities contain terms
proportional to the gradients of the local variables. To find the values of the
transport coefficients and thermodynamic derivatives, we must turn to a more
fundamental theory than fluid mechanics.

Recently, it has been appreciated that time-dependent correlation funections
afford a powerful theoretical tool for investigating nonequilibrium behavior.
Indeed a wide variety of nonequilibrium phenomena are described by thermo-
dynamically averaged expectation values of products of pairs of densities of con-
served quantities at different space-time points. In particular these correlation
functions completely deseribe the nonequilibrium behavior of a system in which
the deviation from equilibrium is small. Since, in principle, we know how to
compute these equilibrium-averaged (2, 3) time-dependent correlation functions,
we are in principle able to completely determine the behavior of a system slightly
disturbed from equilibrium. Specifically, a calculation of the time dependent
correlation funections must lead both to the hydrodynamic equations and the
numerical values of all the thermodynamic derivatives and transport coefficients.

In practice the computational difficulties involved in evaluating correlation
functions are nontrivial. Indeed, the part of the correlation function which varies
slowly in space and time and reflects the hydrodynamic equations is the most
difficult part to compute.

The reason for this difficulty is easy to see. The hydrodynamic equations refer
to a system in local thermodynamic equilibrium. This loeal equilibrium is pro-
duced and enforced by the frequent collisions between particles.? So, the hydro-
dynamic equations refer to a situation in which the behavior of the system is

i This simplification is called a contraction of the description. It is discussed in ref. I.
A description of how this oceurs is given in ref. I and also in ref. 4.
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dominated by collisions. On the other hand, the conventional methods (2, 3) for
computing correlation functions are based, in one sense or another, on a ex-
pansion in some parameter describing the number of collisions in the system.
This parameter is most often the strength of the interparticle potential. Since
the hydrodynamic equations only appear when the behavior is dominated by the
secular effects of collisions, the most straightforward techniques for determining
the correlation funetions cannot be successfully applied to the predietion of
hydrodynamic phenomena.?

In this paper, which is largely pedagogical, we shall be primarily concerned
with using the hydrodynamic equations to learn about the correlation functions.
Our analysis will bear on the inverse problem, the derivation of the hydrodynami-
cal equations, mainly in a negative way. We shall see that the correlation fune-
tions must exhibit complicated singular behavior at long wavelengths and low
frequencies. This behavior, which does not result in each order of perturbation
theory, indicates the necessity for determining successive approximations through
iterative integral equations, or equivalently through extensive resummation of
perturbation expansious.

We first consider the simplest example of a transport process: spin diffusion,
In this case the only hydrodynamic equation is & diffusion equation for the spin
magnetization. I'vom this hydrodynamic equation, we determine the form of the
slowly varying part of the magnetization-magnetization correlation funection.
The hydrodynamie deseription which involves the spin susceptibility (a thermo-
dynamie derivative) and the spin diffusion coetlicient (a transport coeflicient.)
enters into the correlation function. By comparing this result with the correlation
funetion description we find how the correlation function determines hoth the
thermodynamiec derivative and the transport coefficient.

A very similar type of analysis is applied to the algebraically more complex
case of transport in a single component fluid. Here, the linearized form of the
usual equations of fluid mechanics serve as the hydrodynamie equations. The
form of the correlation functions composed of the densities of conserved operators
(number, energy, and momentum) are again determined from these hydrody-
namic equations. In particular, it is shown how the correlation functions vield
the various thermodynamic derivatives and the formulas discussed by Kubo (1)
and many other people (7) for the relevant transport coefficients: the viscosity,
the bulk viscosity, and the thermal conductivity.

The expressions derived are useful in caleulating quantities which appear in
the transport equations. They are also interesting for the converse purpose. The
correlation functions themselves are of direct experimental interest. Lnelastic
neutron seattering, for example, directly measures the density-density correla-

# One possible correlation function approach has been «iscussed by Bayvm and Kadanoff
(5).
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tion function (8). By incorporating information about the form of the correlation
funetion and the thermodynamic derivatives and transport coefficients which
oceur in it, we may attempt to interpret this kind of experimental data (9). In
fact, a similar but more heuristic analysis (10) is already in use in this connection.

1I. SPIN DIFFUSION
A. HYprODYNAMIC DESCRIPTION

As a concrete example of the simplest kind of transport process possible we con-
sider a fluid composed of uncharged particles with spin 14. The particles interact
through a velocity- and spin-independent foree. This situation is realized to an
excellent approximation in at least one system of current interest, liquid He’.

In describing spin transport, we choose a specific direction of spin quantiza-
tion. If, at a given point in space, the spin of the particles were just as likely to
point antiparallel to the direction of quantization as parallel to it, the spin mag-
netization would vanish there. However, if there were an imbalance between the
densities of particles pointing in the two directions, there would be a magnetiza-
tion proportional to the difference in densities. We shall represent the magnetiza-
tion in the direction of quantization at the space-time point r, ¢ by the symbol
M(r, t).

An essential feature of the discussion of spin transport will be the assumption
that the total magnetization is conserved, that is,

filtf drM(x, t) = 0. (1)

This neglects, for example, any coupling of the electron spins with magnetic
impurities or nuclear spins. The conservation law (1) follows from the fact that
the total magnetization is proportional to the total spin of the entire system, and
this total spin is a constant of the motion. The conservation law also has a dif-
ferential form, a continuity equation for the magnetization

%M(r, £) + V(r, ) = 0. (2)

Here, j¥(r, t) is the magnetization current. We can write expressions for these
quantities in terms of the quantum mechanical operators which describe the
individual particles in the system. Let the »th particle have position r,(¢), mo-
mentum p,(¢), and spin in the direction of quantization s,(t). Let m and v be
the mass and spin magnetic moment of all the particles. Then, the magnetization
and magnetization currents are given by

M(x, t) = 2, ys(1)8(r — (1))

(3)
M ) = 2o, ys(){p(t), 8(r — 1,(1))/2m}.

I
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Here, the curly brackets represent the anticommutator
{A, B} = AB + BAd.

FFor this system the hydrodynamic equation is extremely simple. When all the
properties of the system vary slowly in space and time*

<jJ[(‘r, t)y = —DV{M(r, 1)). (4]

The transport coefficient, D, is called the spin ditfusion coefficient. By combining
(2) and (4), we get a diffusion equation for the magnetization,

g{ (M(z,0)) = DV (1, ), (3

No far, we have not asked about how the system came to be disturbed from
full thermodynamie equilibrium. Of course, Eq. (5) is correct, whenever the
variation in space and time is sufficiently slow, independent of the type of initial
disturbance. Nevertheless, it is useful for us to consider a specific mechanism for
producing the deviation from equilibrium.

The simplest such mechanism is a magnetic field H(r, ¢) pointing in the direc-
tion of quantization. Let us suppose that a spatially varying magnetic field has
heen adiabatically applied and is suddenly turned off at time { = (0, so that

H(r, t) = H(r)e" t <0
(65)
=0 >0,
where ¢ Is an infinitesimal positive number. Of course, a magnetic field which is
independent of time and varies slowly in space will induce a magnetization of
the form

(Mir)) = xH(r). (7

The coefficient, x, is called the spin susceptibility. It is the thermodynamic
derivative

_av|

. (8)
oH n—y

Now, we have a complete description of the response to the disturbance (6.
While the magnetic field is applied, the maguetization must satisfy (7); after it
is turned off, M (r, ) will satisfy (5). In order to represent the relaxation he-
havior in a convenient form, we define a quantity M (k, z) which is the Fourier

' This relation was first proposed by N. Bloembergen (/7a} for spins on nuelei fixed on
a lattice. See also (11b). It was derived for particles which are free to move by Torrev
(/1¢) and also by Hart (11d).
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transform of the induced magnetization in space and effectively the Laplace
transform in time. That is, we write

Mk, z) = forlre_ik'r fm dte’™ (M (r, t)). (9)

In Eq. (9), 2 is a complex number. It must lie in the upper half of the complex
plane for the time integral to converge.

It is quite easy to calculate M (k, z). We perform the transformation indicated
in (9) upon (5), finding

0= fdre‘“”/ dte™ [% (M(x,t)) — DVI(M(r, t)):l.
0
After this equation is integrated by parts, it becomes
0= fdre—“"’f dte” (—iz + DE)(M(r, t)) — fdm‘“”(M(r,O)).
0

Aeccording to (7), the spatial Fourier transform of the magnetization at time
zero is x times the Fourier transform of the magnetic field. Thus, we have

0 =(—iz+ DE)M(k,2) — f drxH(r)e ™.

We use the symbol H (k) to denote the Fourier transform of the magnetic field
at time zero and find

xH (k)

Mk 2) = T e

(10)
Equation (10) is a simple representation of the information contained in the
hydrodynamic equations for spin diffusion. Notice that the existence of a diffu-
sion process is reflected in the pole in (10) at z = —Dk’.

We shall use the evaluation (10) of M (k, z) to determine the magnetization-
magnetization correlation funetion.

B. CorrELATION FUNCTION DESCRIPTION

In order to develop the correlation function description of spin diffusion, we
notice that an external magnetic field can be represented by an extra time-
dependent term added to the Hamiltonian of the system

s3e(t) = — ] drM (r, )H(x, 1). (11)

According to the standard techniques of quantum mechanical perturbation
theory, the linear change in the average of any operator, 4 (r, ¢), induced by an
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extra term in the Hamiltonian is

12
A, 1)) = —z‘f dt' (LA (r, 1), 83t ) D - (12)
Equation (12) applies to a system which was in complete thermal equilibrium
at time minus infinity; the expectation value on the right hand side, { ).,., is
the expectation value in the equilibrium ensemble. This result is discussed in
some detail in Appendix A.

We apply (12) to a discussion of the induced magnetization by using the
change in the Hamiltonian given by (6) and (11). The induced magnetization
15 given by

(M, t)

i

¢
if dt’e“'/dr’H(r’w/(r, 0, Mt ) e, t £0,
7: (13)
= zf dt/ee'/fdr'H(r')([M(‘r, O, M ey, t 20

In order to compare (13) with the result of our hydrodynamic discussion, we
introduce an integral representation for the commutator of the magnetization
at different space-time points. Because of the space-time translational invariance
of the equilibrium system we may write

IR d (lk ” ik (r—r" ) —ia({—t"
(3t 0, ML ey, = f%f@agx (K, w)e™" =)

We shall eall x” (k, w) the absorptive part of the dynamic susceptibility. Because
of the rotational invariance of the system, x”(k, w) depends only upon the
magnitude of k—not its direction. Because M (r, ¢) is a Hermitian operator,
x”(k, @) 1s real and an odd function of the frequency, w.

Jquation (13) now becomes

M(r, ) = f (;‘% H(k)e'™* [dif X'k o) for ¢
2T )"

= f (‘15 H(k)e'™" [flfi’ XUE @) e o2 0. (16)

™ w

IA
=]

(15

We convert Eq. (16) into an expression for M (k, z) by employing the definition
(9) of this Laplace-Fourier transform. In this way we find
A T
Mk = 1 Xk ) gy, (17
Jowl W' (e — 2)
Equation (10) gives an expression for A/ (k, z) which is appropriate in the
limit of small 2; Eq. (17) gives an expression for M (k, z) in terms of x” (h, w.
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We can therefore solve for x” (%, ) in the long wavelength limit. We notice that
when x” (k, o) is a smooth function of «’, we can use the identity

. 1 1 , ’

Iim — =(P,_w+7r7,6(w—w) (18)

-0 W — W — 7€ w

where @ stands for the prineipal value. Thus, when z lies just above the real axis,
2 = w + e

Re[M (k, w + 2¢)/H (k)] = x"(k, w)/w. (19)
Equation (10) yields the expression

xDEw

X (k,w) = m

(20)
Because the hydrodynamic equations are valid for slowly varying disturbances,
Eq. (19) gives the correct expression for x” at small k. Notice that at long
wavelengths and low frequencies the value of x” (%, «) depends sensitively on
the relative magnitude of w and &°. When o << DF’

X" (k, @) = wx/DE’
while when Dk* << w
x"(k, w) = kaZ/w.
Equation (20) for the dynamic spin susceptibility contains the same informa-
tion as the hydrodynamic equations from which it was derived. The fact that
the magnetization satisfies a diffusion equation is reflected in the poles of (20)

at frequencies &+ ¢Dk’. The magnetization-magnetization commutator deduced
from (20) and (14),

(M (x, 8), M(£, ) ey, = — ixD [ TE jegictenmmo—n gy oy
(2m)?

exhibits this diffusive character.

C. Sum RuLges rFor x”(k, w)

So far, we have only made use of x”(k, «), the absorptive part of the dynamic
spin susceptibility. In our further work, it will be convenient to use the complex
dynamic suseeptibility

roneq
x(k,z) = [ he) (21)
T o —z
When z lies just above the real axis x(k, z) may be split into its real and imaginary
parts

x(k, & + de) = x'(k, @) + ix"(k, @),
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the identity (18) yielding

dw X ke A-)A. (220)
T (.u - w

x’(vl\', w) =

Equation (22a) is ordinarily called a Kramers-Kronig relation. There are two
such relations, which give the real part of the response in terms of the imaginary
part and vice versa. The other Kramers-Kronig relation is

X”( /\', (D) — & / ({w.. X, (,/\73, . l :-)gh)
(.L )
Equations (22a) and (22b) may be derived from one another by using the
relation
do 1 1

® — =7r§(w—w,).
Tw— @6 — @

Notice that M (k, z) can be expressed in terms of x( &, 2). From (17) we deduce

—12M (K, ) _jdw x” ]x_ w_

- — x(k, 2
T H® xth, 2)

and hence,

Mk z) _ —x(k,0) + x(k,2

_ .
H{®) i =)

The quantity x(k, 0) will prove to be particularly important in all that follows.
Its importauce is illustrated by taking the Fourier transform of Eq. (15), which
gives

(k) = fdre'”” G, 1= 0))

M) = [ 99X (i;is? H(k)
o

x (£,0) H(k

= x(k,0) H(k).

Since the response at time zero is a response to an adiabatically applied disturb-
ance, x(k, 0) is the static, wave-number dependent, magnetic susceptibility.
Henceforth, we shall use the conventional abbreviation x(4) = x(k, 0). I'rom
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(24) we have

” k
b = [Lexthe) (25)
o w
Equation (24) gives the exact response to an adiabatically magnetic field.
However, according to Eq. (7), when the field varies very slowly in space

M(k) = xH (k). (7)
Thus, it follows that

X = llm x(k) = lim (26)

/ do x"(k, w)
k-0 _7|"— w )

In general, we may view (25) as a sum rule which expresses the static suscep-
tibility in terms of an integral of x” (k, w). Eq. (25) is just an application of one
of the Kramers-Kronig relations at zero frequency. In the long wavelength
limit, the value of the sum rule is the thermodynamiec derivative,

_am
0H g

It is instructive to compare (26) with a more familiar type of sum rule which
expresses moments of x”(k, w) in terms of equal time commutators. The first
nontrivial example of this kind of sum rule is obtained by taking the time de-
rivative of Eq. (14) and applying the conservation law (2). This leads to the
identity

%([M(r, ), M(', ) eq. = — ([V-§"(x, ), M (2, 1)])eq.
. dw dk ” ik (r—r')—iw({—t’
— 1 f = @n) wx”(k, w)e (rr—feli=th)

We can easily compute the equal time commutator of the magnetization and the
magnetization current by using the definitions (3) of these quantities and the
canonical commutation relations. The result

(0, M(E, )]ea. o= = (V/4m)iV's(x — £')n(x, 1))ea.  (27)

is a very disguised version of the fundamental statement that the commutator
of the position and the momentum is ¢. Here, n(r, ¢) is the density of particles
at the space-time point r, {. Equation (27) implies

_ /‘dw 5 )3 Xr/<k’w>eik-(r—r') 'Y<n>eq V6(r )
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or

” h 2 e
f—wx(/\, —7—4k. (28)
Ilquation (28) is the spin analog of the longitudinal /~sum rule which has been
extensively discussed in the literature. This sum rule is exact for all values of &
as is the static Kramers-Kronig relation (25). However the latter has an inde-
pendently computable thermodynamic value only for small i-. The sum rules also
differ m that Eq. (28) expresses a moment of x” in terms of an equal time com-
mutator while Eq. (25) gives the value of the time integral of a commutator.

These sum rule statements can be incorporated in Eq. (17) for M (k, z) H{k
by performing an expansion for large values of z. In particular, Eqs. (231 and
(21) may be rewritten as

Mik, z) 2 . 1 [ dw " dw .
I+ Lk L o
H) ~— 2% Tszw"(”""”rzx W“’X”’“)
)
+ Tdo w I
< T w

’ .. SR . . . . . N
T'he coefficient of 7/2” vanishes because x” (£, w) is an odd funection of the fre-
quency. According to the sum rule (27), the coefficient of z'/z’* s 14,,]\.3,),2 m
Therefore, for small £,

Using the hydrodynamic equations, we found that for small values of / and =
Mk, z) X
THO T =i+ DI o)
and
her =g i(I—D:‘I)/\ e 20

l.et us observe now that the hydrodynamic analysis agrees with the sum rule (23)
but completely fails to satisfy the rule (28). The easiest way of verifying hoth
properties is to notice that Eq. (10) agrees with Eq. (30) at large values of ¢
only to order /2.

We might have anticipated that the second sum rule was not satistied by the
expression obtained from the hydrodynamic approximation (10) since that sum
rule gives a result of order &° while (10) is only expected to be appropriate for
the smallest values of 1*. We can understand phenomenologically how the sum
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rule (28) is satisfied by extending the hydrodynamic description to include the
effect of a collision time.
D. INTRODUCTION OF RELAXATION TIME

The main reason why the function x”(k, w) deduced from the hydrodynamic
equations fails to satisfy the commutation sum rule can be traced to the assump-
tion that the current responds instantly to changes in the magnetization ac-
cording to

GY(r, 1)) = —DV(M(r, t)) fort = 0. (4)

Actually, there must be some lag in the response of the magnetic current to rapid
changes in the magnetization. Let us suppose that this response lag is described
by a single relaxation time, 7, according to the equation

d . 1.
5 Gz, t)) = - G (x, t)) + DVM (x, t))] fort = 0.
We may substitute this form for the current into the conservation law and find

&  1(9 2
[(,i—ﬁ—i-;(E—DV):I(M(r,t)):O fort = 0. (31)
We again find M (k, z) by Laplace transforming in time and Fourier transforming
in space the equation of motion. After using the initial conditions

M(5,00) = xH() 2 (5 0) oo = 0

we obtain

M(k,z) _ x(1 —dzr)

Hk  —iz+ Dk* — 72¢° (32)

To see whether (32) agrees with our sum rules, we expand for large z obtaining
M(k,z) _ix , iDk'x (1)
Hw 21 o 1O

A
Ilence, all the requirements including (30) can be satisfied by taking a relaxa-
tion time which satisfies

2
D = n_'y T 3 ( 33)
4m x
Equation (33) has been used by D. Hone (/2a) to achieve a semiquantitative
understanding of the experimental value of D in liquid He® at very low tempera-
tures. It has also been used by T. Moriya (12b) in discussing the spin correlation

function in ferromagnets.
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According to Eq. (19), the dynamic susceptibility can be determined as
Re[M (k, w);/H(Kk)]w. Therefore, from Egs. (32) and (33) we find in the single
collision time approximation .

U U 54
X" (k@) o 4 Dk — (dotxm/ny)) ’

Also, from (32) and (33) we find

iM(kz)e _ (1 2 4z‘~’xm>"‘
IO Die )

xth,2) = x + (35)

K. DisPERsTON RELATION REPRESENTATIONS FOR SUSCEPTIBILITY

1t should be emphasized that Egs. (34) and (35) are in no sense exact. In this
section, we shall generalize the phenomenological discussion in an exact form.
In order to derive this generalization, we first examine the analytic properties
of x(k, z). We note that x(k, z) is an analytic function of the complex variable z
whose singularities lie entirely on the real z axis. I'rom Eqgs. (35) and (231, we
see that, in the constant collision time approximation,
1 1 dme’ 22

. = ) (36
x(k, 2) X ny*h? Dy k?

Consequently, we might guess that the quantity

1 1 1 im
fh%@_xm}+ww

has a relatively simple analytic structure.

To justify this inference we examine the zeros of x(£, z). The important oh-
servation to be made is that in a thermodynamically stable system the quantity
wx” (&, w), which measures the difference between the energy fed into the system
and the energy given up, by a weakly applied field, must be positive definite.
I'or a canonical ensemble this positive definiteness may be directly verified by
expanding the commutator in terms of matrix elements and using the fluctuation
dissipation theorem. Both of these statements are proven in the appendices.
Using the oddness of x” (4, w) we may write

X(A,Z) = i:c:_;g 5 X”(/n',w).

Consequently, if 2° = x 4 ¢y, we have

. ) " dw wilf
1 k(e Uy ] o wy O ),
m x (k,(x + 2y)") il R (hy @)

We see that Imx(k, z) only vanishes for real z*—that is for z either purely real
or purely imaginary. Moreover when 2° is negative x(k, z) is real and positive.
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Thus the only possible zeros of x(k, z) appear for real z. Since the zeros of x( k,z)
are poles of 1/x(k, z), the only poles of 1/x(k, z) lie on the real frequency axis.
Finally we recall that in the limit of large 2

doow , v’k
X(k,z):'_ "‘“—2‘)((](7,0)):— -
T 2 4mz

From these properties we deduce the spectral form

5[1 1] dm 1 (do f(k )

x(k,2)  xB)] Tk T T X)) T wz(w—2)

To interpret the spectral weight function, f(k, w), we compare this result with
Eq. (36). In Eq. (36), the variable z is restricted to lie in the upper half of the
complex plane. When z = « + 7¢ the spectral representation becomes

x (k) = 4mw2x(k_) — if(k, ) fdw Jk, w )w ‘

x{k, w + ¢) ny2k? o —

Since 2¢f(k, ) is equal to the discontinuity in the function x ' (k, 2) across the
real axis and that discontinuity is imaginary, the function f(k, w) is a real odd
function of the frequency. If the function wf were independent of frequency, the
last term in Eq. (38) would vanish and Eq. (38) would be identical with Eq. (36)
with f = w/Dk’. Therefore, it is reasonable to write

Sk, @) = w/D(k, 0)k* (39)

(37)

(38)

with the knowledge that in the limit small wave number and very small frequency
D(k, ) reduces to the spin diffusivity, at least when o’ = — (DE*)%.
This leads to an exact spectral representation for x(k, 2)

x(k,2) | 2 2 1 T
ﬂmﬁ—[k x(k) + Wz_wmmJ (40)

and, from Eq. (19)
_ x(k)D(k, w)k'w

X’(k;w> _W
[ 1= Dk )i — M“Duwuw) (41)
w Dk )
—Q—G‘/ T w— o Dk, o)

Of course, Egs. (40) and (41) give only one of many possible spectral repre-
sentations for the response. The virtue of this particular representation, how-
ever, is that the low frequency and low wave number limit of all the quantities
appearing on the right hand side of these equations will be regular. This knowl-
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edge is quite useful both for theoretically estimating x(4) and D(k, w) and for
interpreting experimental results on x” (A, w) in terms of x and D. Note that if
the function D(k, ») were constant (40) and (41) would be identical with (33)
and (34). This gives a precise meaning to the single collision time approximation.

Equations (40) and (41) are easily modified to describe other seli-diffusion
processes. In our analysis, the spin on the particles just serves as a kind of label.
If the label were somewhat different; for example, if the system contained parti-
cles painted red and green or identically interacting isotopes, the results would
be unaltered.

Another useful representation is obtained by observing that the funetion

4w x(k,2)
nk*y* x(k)
is analytic off the real axis and approaches unity at infinity. Its logarithm is

therefore analytic for complex z and its real part is continuous for real z. It is
therefore possible to represent the function as

x(k) imz?

x(h,2) _n'yg/f") ox / (,if‘i, 67(’/\', w/ﬁ)
™ w — Z
where 6 is a real function. As w approaches the real axis we find
X (ky @) 4 ix"(k, @) = Nk, @ix(k)e™

where

ANE w) = — T €XP @ ji—:/ i(—,/\’_w;)
Moreover the discontinuity in x '(k, 2),'’x (k) is given by

flhkyw) = N0k o) sind(h, w).

This permits us to identify the argument of x (&, z), that is, 8, as
weot 8k, w) = DE

in a first approximation, and as
9 —1(.0: m
weot 8(h,w) = DL — - Xq
ny-
in the next. We might therefore introduce D as the constant term in an effective
range expansion.
I'. ExprEsstoNs ENTAILING THE FLUCTUATION-DIssipaTION THEOREM

One may carry the analysis a bit further by employing the fluctuation-dissipa-
tion theorem. This theorem relates the canonically or grand canonically averaged
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commutator and anticommutator of any pair of hermitian operators 4.(r, t),
each of which commutes with the number operator N and transforms in time
according to

iAdr, t) = [3¢, A:(r, ).

This is to say, the operators are assumed to have no explicit time dependence
and the usual implicit time dependence of Heisenberg representation operators.
The theorem states that if the commutator of two such operators is given by

QA 0, A O, = [ 2 [ F ety ) (am)

their anticommutator is given by
<{Ai(r; t) - <Ai>eq.; Aj(r,; t,) - <Aj>eq. }>

-5 e

N , (42b)
Pttty 4y B ﬁw (K, ).

This relationship between the commutator and the anticommutator is called a
fluctuation-dissipation theorem because the anticommutator expresses the time
dependent correlations or fluctuations in the system and, as we have seen, the
commutator describes the transport coefficient or dissipation.’

In particular, the magnetization anticommutator is

(gk)3éc oth - 6‘-’-’ ”(A ) zk-(r—r’)-iw(i-t')‘ (43)

In the remainder of this section we shall continue to omit the subscripts since
we are only considering one operator, the magnetization. From Eq. (20), we see
that for large values of r and ¢, or small values of k and w, the anticommutator is

B rog [ de
S (M (0, M, ))) = /?

dk ik.r—Dk2|¢]
(2m)? )

Therefore, the anticommutator also has a part which satisfies the diffusion
equation.

Of course, it is hardly surprising that this correlation function behaves in the
same way as a response to an external disturbance. The correlation function re-

g M (r, 1), M(0,0)})eq. = x

5 The fluctuation-dissipation theorem was first derived by H. Nyquist (18a) who related
the random noise in an electrical circuit (the fluctuations) to the response of the circuit
to an applied voltage (the dissipation). H. B. Callen and T. R. Welton (18b) recognized
the importance of Nyquist’s idea and generalized it somewhat. The fluetuation-dissipation
theorem lies at the very heart of much recent work in many particle physies. It is, for
example, the ‘‘boundary condition” utilized by Martin and Schwinger (2). For a discussion
of the fluctuation-dissipation theorem which is close to the spirit and purpose of this article,
see (6).
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flects how the natural fluctuations in the system die out, while the hydrodynamie
equations describe how externally induced deviations from equilibrium disappear.
But the system should not really have any way of knowing whether a particular
deviation from equilibrium was produced by a natural fluctuation or an external
disturbance. Therefore, the same transport processes which appear in the hvdro-
dynamic equations should also manifest themselves in correlation funetions.

The fluctuation-dissipation theorem can be used to obtain a frequently uoted
expression for the spin diffusion coefficient D. From (20)

Dx = lim {hml x”( ',w):’.

w0 | k>0
Using (43), Dy can be expressed in terms of the magnetization anticommutator

as

Dy = lim lim drfdz p K et ”‘igml (r,t), M(r', r’)m].

w->0 [ k=0

The differential conservation law, (a3//9t) + V-j* = 0, uow gives

wa0 | k>0

Dx = lim hmfdr/dt B 6 <’k i, 0, k-3 r,t');‘)J_

Sinee the direction of k is now quite irrelevant, we can replace k-j* k by, say,
the « component of j*'. Thus, we finally find

Dx = lim | dr dt &““ ”6<{]r‘"(r 0,50 0. 44

w0

This type of expression, in which the transport coefficient is given in terms of
the anticommutator of the currents, has been much discussed in the literature
(6,7).

In addition to relating fluctuations to dissipation as in Kgs. (43) and (44) we
may use the identity (42) to make another inference. FFor this purpose we oh-
serve that the susceptibility is the thermodynamic derivative,

oM |
BH H= ’
FFor a system in thermal equilibrium in the presence of a statie uniform field the

magnetization can be calculated in the grand canonical ensemble where the
expectation value of any operator is defined by

(A) = tr [pA]
exp( —8l3c — wnl) (43)

tr [exp (—g[3c — wm)]’

(%)
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Here, 3¢ and 9t are the Hamiltonian and number operators. The trace is a diagonal
sum over all states of the system with all possible values of the energy and the
particle number. The parameters u and 3 are respectively the chemical potential
and the inverse temperature (in energy units).

In calculating the effect of a magnetic field which is independent of r, we apply
Eq. (45) to the case in which the Hamiltonian is the Hamiltonian in the absence
of the magnetic field, 3¢ , plus the magnetic energy —H [ drM(r). The density
matrix p, can be expanded to first order in the magnetization since the total
magnetization commutes with both 3¢, and 97. In this manner we obtain

P == Peg. + Peq. ﬂH f dr {M<r> — tr [Peq. Z‘I(r)]}

where p.,. 1s the density matrix with no magnetic field

_ exp (—pl5c — u)
Peas ™ Fr lexp (— Bl — wa))]’

Since the magnetization must vanish when there is no field,
(M) = BH tr [peq, M(x) f dr’ M(r'):| ~ 6H <M(r) f ar’ M(r’)> ,
eq.

the susceptibility is®

%% =x = gfdr' UM (), M(1')}eq. . (46a)
(In writing Eq. (46a) we have taken advantage of the fact that, for equal times,
the magnetization at one point will commute with the magnetization at another
to replace M (r')M (r) by the more symmetrical combination L4{M(r), M (r')}.)
Using the fluctuation-dissipation theorem in the form (43), we may rewrite
Eq. (46a) as

d ” )
x = f _;wg coth %ﬂ x" (&, &) |e=0- (46b)

Let us compare this thermodynamic form for the susceptibility with our previous
result

”
leir%fflf&i’@. (26)

The positive definite integrand in (46b) is greater than or equal to the positive
definite integrand of (26) and the two expressions are equal only at w = 0. It

5 This expression was first discussed by J. Kirkwood (14).
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therefore follows that x”(4, w)/w must be verv sharply peaked about zero
frequency.’ This sharp peaking of x”/w is predicted by Eq. (20) according to
which x” w becomes a delta function at zero frequency as k goes to zero. More-
over the mtegral conservation law

d : -~
dtfdrﬂl(r,t) =0

implies that the k = 0 part of the anticommutator can ouly contain zero fre-
quency components. Thus, the frequency integral in (46b) can only contribute
at exactly zero frequency and expressions (46b) and (26) are completely con-
sistent with one another.

I1I. TRANSPORT IN A FLUID
A. Hyvropy~yamic EQUaTIONS

Spin transport is particularly simple because it is described, in the hydro-
dyuamic limit, by a simple diffusion equation. IFor most systems, however, the
hydrodynamic equations are more complex. This is because there is one transport
equation connected with each differential conservation law. For a one-component
fluid, for example, there is a conservation law and transport equation for the
density of particles, n(r, t), the momentum density, g(r, 7), and the energy
density, e(r, t). These conservation laws can be written as

9 n(r,t) + V-g (r, 1)

5 2 =0 number conservation, (47a)
, m

d . . )
5 g(r,t) + V-7(r,t) = 0 momentum conservation, {47h)

%e(l‘, £) + V-j(r,t) =0 energy conservation. (47¢)
Hevre, j° is the energy current density and 7 is the stress tensor, which serves as a
momentum current.

Of course Lgs. (47) are incomplete in themselves. They must be supplemented
with the assumption that when all variations in space and time are slow, the
system ecan be treated as if it is in thermodynamic equilibrium locally. Since the
state of the fluid in equilibrium is characterized by the five conserved variables
or five associated intensive variables we expect local equilibrium to be character-
ized either by the local densities of the conserved variables or by related spatially

P There are a few cases known in which the limit as & goes to zero of an integral like
(46) is not equal to its value at zero wave number. The most notable example of this patho-
logical behavior is a system of particles interacting through a Coulomb foree, in which the
fong-ranged interaction makes the limit of small wave numbers peculiar.



438 KADANOFF AND MARTIN

and temporally varying intensive quantities. Conventionally these are chosen
to be the temperature, pressure, and average velocity.
We define an average velocity by writing the momentum density as

(g(r, 1)) = (n(r, t))mv(r, t).

We shall consider the case in which the deviation from complete equilibrium is
small. We may further suppose that the complete equilibrium system is taken
to be at rest and uniform. We may then write to first order

@&(r, 1)) = nmv(x, 1) (48a)

where 7 is the equilibrium density of particles. For a system of particles in com-
plete equilibrium, moving with uniform velocity, v, Galilean invariance implies
an energy current

i“= (e + pv.

When the system is in local equilibrium the energy current will generally contain
a term of this form. However, if there is a temperature gradient in the system,
there is an extra flow of energy from hot regions to cold regions. These two effects
lead to an energy current of the form

i(r, t) = (e + p)v(r, t) — «VT(r, t) (48b)

where € and p are the equilibrium parameters.” The coefficient « is called the
thermal conductivity.

Of course, the temperature which appears in (48b) is not independent of the
other variables. Because the system is in local thermodynamic equilibrium,
variations in the intensive parameters satisfy the usual thermodynamic rela-
tions. Thus, a change in the temperature is related to changes in the density and
energy density by

aT

vT(r,t) = — | vn(r,t) + ﬁ Ve(r, t).
an € 66 n

8 However, in a superfluid there exists more general modes of motion than this mode in
which the fluid appears locally to be moving as a whole. The superfluid can sustain without
appreciable decay the relative motion of its excitations (the normal fluid) against a sea of
its condensed state (the superfluid). This extra freedom results in the local equilibrium
situation being described by not one but two velocities: the condensed mode velocity v,
and the normal mode veloeity v, . In this case, the energy current, neglecting dissipation, is

jr, £) = (e + p)valr, 1) + wps(va(r, ) — Valr, 1))

where ps is the density of the superfluid (condensed) component. The inclusion of this
extra degree of freedom of the superfluid changes the hydrodynamic equations and this
invalidates all the main conclusions of the present work.



HYDRODYNAMIC EQUATIONS AND CORRELATION FUNCTIONS 139

To complete the set of equations (48), it is necessary to specify the stress
tensor, 7. I'or a fluid at rest in complete equilibrium the stress tensor takes the
form

Tij = 8;5p
where p is the pressure. When the fluid is disturbed from equilibrium, extra
stresses are produced as a result of viscous forces in the fluid. These forces are

proportional to gradients of the velocity so that the full stress tensor may be
written as

ilr, 0 = bip(r, t) — n<av"§;’_” + av’éifﬁ)
7 i

{48¢c)
).

Here 7 is called the viscosity and ¢ the second viscosity or bulk viscosity. Again
there may be additional terms in a superfluid. We shall henceforth ignore this
possibility, restricting ourselves to normal fluids. Changes in the pressure, p, are,
in a normal fluid, related to changes in the density, energy density, and tempera-
ture through the usual thermodynamic relations. Therefore, Eqs. (47) together
with Eys. (48) form a complete description of the fluid. In fact, they are the
linearized form of the usual equations of fluid mechanies.”

Now, we recombine these equations in a form which is convenient for our
purposes. With the aid of (48a) and (48¢), the momentum congervation law may
be written as

- 6/.7' V'V(I‘, t) (f -

MM v

‘ 7 2 ~ C+lan o
) ) — — - 22 VV. A = {). )
(glr, 1)) + Vp(r, 1) o Vig(r, t)) o Vgl 1)) = 0. (49

0
ot
It is convenient to divide the momentum density into longitudinal and transverse

parts, that is, to write

g(ry t) = gl(r, t) + gt(rv t)

where
V-gur,t) =0

VX gidr, ) =0.

With these definitions, the transverse part of the momentum satisfies the diffu-
sion equation

d _ l ) ) . .
Y (gilr, 1)) = o Vigdr, ). (50a)

* See, for example, ref. 15.
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To get the remaining hydrodynamic equations, we take the divergence of (49)
and use the number conservation law (47a) to eliminate g(r, ). We then find

ot n ot V2] <n(r, t)> + v p(r,t) = 0. (50b)

The momentum density may also be eliminated from the energy conservation
law which results from substituting (48b) into (47¢). In this way, we find

sl - T Pamn |- wren =0 oo

The analysis of the diffusion equation (50a) follows along exactly the same
lines as the analysis of spin diffusion given earlier. We suppose g,(r, t) dies off at
large distances so that we may define

gi(k,z) = fdrfo dt e T g (1, 1))

g(k) = fdr e M g(1,0)) = mnv(k).

We then find

mnv(k)
—1z + (gk?/mn)’

Equations (50b) and (50c¢) can be analyzed in a very similar way. We define

n(k, z) = fdr .[D dt e F T n(x, )

gi(k, 2) = (51)

p(k, 2) = fdrf dt e * T (r, 1)
(]

n(k) = f dr & n(x, 0)), ete.

We notice that we can guarantee that (dn(r, t)/8t)io = 0 by taking the longi-
tudinal part of v(k) to be zero initially. With this additional requirement, the
transform of Eqs. (50b) and (50¢) become

tmz(—iz + DiEY) n(k, 2) — E'p(k, 2)
— — m(—iz + D) n(k) —iz[e(k, 2) — Lj;—pn(k,z)jl 4T, 2) (928

- - [eu{) - f_:—pmk)] (52b)
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where we have introduced the abbreviation D, = (+39 + ) mn for the
“longitudinal”’ diffusion coefficient.
Notice that (52b} involves the quantity

q(k,z) = ek, 2) —Er—_:pn(,k,z) 1H3)
which is the change in the energy density minus the enthalpy per particle times
the change in the number density. The response ¢(k, z) and the corresponding
operator,

glr, 1) = elr, t) — 6%‘—I_l—pn(r,i)

will play an important role in all that follows. To understand ¢, we recall the
thermodynamic relation

TdS = dE + pdV
which holds at constant particle number, N. If ¢N = 0, we have the additional
identities
—dV/V = dn/n
and
dE = d(eV) = Vde + edV = V]|de — (e‘nidnl.
Thus, at constant N

i dS = de — ¢ TP dn.
T n

This permits us to identify ¢(r, {) as an operator whose changes represent 7'
times the change in the entropy density. Thus, we shall call ¢(r, ¢) the deusity
of heat energy.

We are, of course, permitted to use any convenient set of variables in analyvzing
Kqs. (52). It will prove convenient to use the matter density n(k, z) and the
heat energy density ¢(k, z). Because the system is in local thermodynamic
equilibrium the temperature and pressure can be written as"

; ) Tl V oT .

[‘(k,u) = m{s rL(k,Z‘) + TJ()‘\' . (I(k,z)
_9p| y 4 Vop .

pik,z) = an s n(k,z) + T oS gk, z).

1 Because our identification of ¢ was made at fixed A, all the thermodynamic derivatives
here and bhelow must be taken at fixed AN.
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For the variables which characterize the initial conditions, it is convenient to
use not ¢(k) and n(k) but the pressure and temperature defined by

on
n(k) = 5;) ‘.T P

T8
Vépir

T 88 |

q(k) = Vﬁ‘p

p(k) + T(k).

Written in terms of these new variables, (52) becomes

l:izm( —iz + Dk — K gp} :In(k 2) — czgg%J q(k, z)
(54a)
= — m(—1z + D,k l: ’ p(k) + { T(k>]
I:—iz + i I;,%g "] q(k, 2) + k'’ 3—T L n(k, 2)
T 48 T BS (54b)

Before discussing the general solution to (54 ), we consider a particular simpli-
fication which occurs at very low temperatures. As the temperature goes to zero
the coupling between the mechanical variables (the pressure and the density of
particles) and the thermal variables (the temperature and entropy) becomes
very weak. The pressure becomes a function of the density not the temperature.
Hence the thermodynamic derivatives coupling ¢(k, 2) and 7'(k) into Eq. (54a)
disappear. Similarly, the entropy depends more sensitively on the temperature
than on the density or pressure; consequently the thermodynamic derivatives
which couple n(k, z) and p(k) into (54b) vanish. In this case the solution to the
equations is

1
n(k z2) = —( —iz4+ DK z—?)p(k) [f _ldps + zlekzjl (55a)

m dn
and
_Tas 2V dTT™?
q(k, 2) v aT T(k)[ z + «k Tds] ) (55b)

Equation (55b) states that the temperature satisfies a diffusion equation

a%T(r, 1) = DrV*T(x, 1)
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for t > 0, with the thermal diffusivity given by

T dS
1)7' = K I,?T

Fquation (55a) states that the density and pressure satisfy a damped sound
wave equation

9 - 9 .\
— — V= v =
<6t2 ¢ Pat >p(r,t) 0

for t > 0, with the sound velocity ¢ given by
mc® = dpjdn
and the sound wave damping constant
I'=D,.

By examining the solutions to Eqs. (54) in the general case, we see that sound
propagation can be isolated from heat diffusion whenever £ is so small that

(DY < &
I'or these wavelengths the solutions to (54), omitting only terms of order

(Drhie)?, are

s on Co
k,z)=pk) = (1=
nik,z) =p )apr< ’

Cp

) [—iz 4+ DK

— p(k) F?."f: [r “ 1+ Dy <1 - “‘) - iz "”] (8 — &) 4 2Dl (560
e

(9;p' €p Cp Cp
T 2 (i DR — T 2 DA — R A i
d[ P an
and
. 91—1 T a8 . 2.1
q(k, 2) = Tk mnel—iz + DT + plk) Vap [—iz + Dz k7]
T

it
-1

- p(k) ;{‘}‘; Do k2 — AR+ ek
T

where ¢, and ¢, are the specific heats at constant volume and pressure

T oS,
mney = - =7
»
T as,
mne, =

var .,
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In this more general situation, the sound velocity is given by

me = g% ,= Ccl: g—zt (58)
while the thermal diffusivity and the sound wave damping constants are

Dy = x/mnc, (59)
Dy + Del(ep/c.) — 1]. (60)

B. ConsTRUCTION OF DI1sTURBANCE FOR CORRELATION FUNCTION DESCRIPTION

r

I

Before we can use the solution for the hydrodynamic equations that we have
just derived, we must look into the following coneeptual problem. We wish to
compare the previous description with a description in which we mechanically
displace a system from equilibrium in such a way that all variations in time and
space are slow. In our discussion of spin diffusion there was a very natural mecha-
nism by which this deviation from complete equilibrium could be mechanically
induced. The spin magnetic moment could be altered by applying an external
magnetic field. There exists no such handle for the molecules in a fluid. In par-
ticular, the mechanical forces by which a heat conduction process is set up are
rather subtle. )

Now almost any force which disturbs the system from equilibrium will set up
heat conduction and sound propagation processes, and if we wait long enough,
these will be the only modes we will generally find. However if we are to infer
the form of the correlation functions from the hydrodynamic equations, which
are only true when the systern is in local equilibrium, we must apply a disturb-
ance which guarantees that the system is in local equilibrium at all times, not
just for long times. That is to say, we must select an interaction Hamiltonian
which disturbs the system in such a way that the system is even in local equi-
librium initially.

To aid us in choosing such a mechanieal disturbance, we recall the method for
computing the average value of an operator, A(r, ¢), in a system in full equi-
librium. If the system is moving with a velocity v, the average of 4 in the grand
canonical ensemble is

(A(r, ) = tr [pA(r, )]

— o =t
p = exp E [Tr exp =] (61)

—
=)
—

—8 [GCO — N+ 15 mo — f drg(r)-v].

The thermodynamic state of the system is described by g, 8, and v. If the ve-
locity is small, the »* term in (61) may be neglected.
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We note that it is possible to represent a situation in which the chemical
potential changes from u to u + du, the temperature changes from 7' to 7" + 87,
and the velocity goes from zero to év by writing the density matrix in the com-
plete equilibrium form

p = exp [—B(H — udi]| I Trexp [—8(H — w)] '

with a modified Hamiltonian, 3 + 63C, where

EVAN ., )
b = —/ alr{7 lelr) — un(r)] + dun(r) + Bv-g(r)ﬁ (6G2)
J
In analogy with (62) it is appealing to use the interaction Hamiltonian
re(t) = —f] (677(vr r, 1) — pn(r, )] 4 dulrin(r, i)

+ ovir) -g(r, f)} e for t < 0, (63
/

=0 for t > 0.

to represent a situation in which the system is in local thermodynamic equilibrium
for all times less than zero. We would, of course, guess that the local velocity
would be év(r), the local temperature T 4 87 (r) and the local chemical po-
tential 4 + Su(r). If we can show that the system is in local thermodynamic
equilibrium for times less than zero, then we can use (63) as an interaction
Hamiltonian for producing hydrodynamic flow.

To justity the use of (63), we must prove that for all times less than zero, the
average of any operator A(r, £) changes from its complete equilibrium value
by the amount

94| 94!

S(A(r, th = ) — (r) 4+ == - 8v(r) for ) (64)
A, th 5 1 u(r)-{—aT“ +8v,m vir ort < ( 3

The derivatives indicated in (64) are, of course, thermodynamic derivatives.

The proof of (64) is essentially identical with the proof (in Section II, ()
that limy .y x(A) is the thermodynamic derivative dM/dH. For simplicity, we
cousider the case in which 838 = év = 0. We write a spectral form for the .4 — «
commutator

k.
(2m)?

According to the fluctuation-dissipation theorem (KEq. (43)) the A — n anti-

Q0,0 ) = [ @

ik {r—r')—twli—t’)y ¥
(’I T XAq_,;(k, w).
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commutator 1s

(4G, 0) = (A)ep 0l 0) = (e
dw ol T miet—in) B‘*’
= [ L] o T N ) coth B

We can calculate the thermodynamic derivative dA/du from Eq. (61), obtaining

B WA D, O, — (A (e

Wiy 2

It is of course implicit in writing this equation that the static correlation fune-
tion has no long range part or that the integral converges. This is not the case
with 94 /8v, or {4, v} in a superfluid. Apart from such exceptional situations, we
may write

A \ f do 8 Bw
— = [ —Zcoth™" x4, .
o 1 - 3 0th 5 xaa(0, @)
Since the total number of particles is independent of time x4 .(0, @)/ must be
just a delta function at zero frequency. Therefore, just as before, we can make
the replacement

(Bw/2) coth (Bw/2)x4n(0, @) = x4a(0, w)
and find

| ”
% _ f@-’XAn(O, w) . (65)

8[./- T,v

We can use Eq. (12) to calculate the response to the time-dependent dis-
turbance (63). Then, in just the same way as we obtained Eq. (15), we find

w(k)e ik-r f dw XAn(k w) fort <0

w

where u(k) is the Fourier transform of éu(r). Thus 4 (k), the Fourier transform
of 8(A(r, 0)), is

” (k, w) .

A(K) = u(k) f‘%‘”“ (66)

w

If du(r) contains only very small wave numbers (or equivalently, varies slowly
in space) then the k which appears in (66) may be replaced by 0. A comparison
of (65) and (66) indicates that

A(k) = ‘% u(k)

T.v
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0l

§{A(r, b)) = 8‘4'1 Sulr) for t < 0.
Ol 7.y

In this way we can verify that Eq. (64) is valid whenever du(r), 67'(r), and
sv(r) vary sufficiently slowly in space. In the limit of slow variation, the system
appears to be in local thermodynamic equilibrium and p + dutr), 7" + 671,
dv(r) are just the local chemical potential, temperature, and veloeity.

This is, however, a weak link in this derivation of (641, namely, our assump-
tion that

a " 2 "
Hm] do xij (k@) _ ] do xi1(0, @)

k>0 ™ w ™ w

There are situations in which k = 0 is quite different from all k # 0. This differ-
ence will appear whenever there are infinitely long-ranged correlations. These
correlations tend to affect k = 0 modes very differently from k # 0 ones. Thus,
for example, in a Coulomb system, the exact shape and nature of the surface
will determine the behavior of the plasma oscillation at k = 0. Also, in a super-
flud, the surfaces and past history of the body will determine the relative
proportions of superfluid and normal flow at k = 0. This effect appears because
of the infinitely long-ranged correlations in the superfluid component. Thus,
in these cases, Eq. (64) fails to be correct.

I'or the purposes of the above argument, the chemical potential, the tempera-
ture, and the velocity were a convenient complete set of variables. However,
the chemical potential does not have any direct physical meaning in the one-
component system. Consequently, it is more convenient to eliminate the local
chemical potential in favor of the local pressure by using the thermodynamic
relation

dp = ndu+ (S: 1) dT = ndu+ (e +p — un) dT. T (67a)
to define
pk) = nuk) + (e+p — w) (k)T (67h)

To see that p(k) has the significance of a change in the pressure in the limit of
slow spatial variation, it is only necessary to use the thermodynamic relation
(67a) to rewrite (64) as

Alr, 1) = [néy(r) et p— ) ‘27—(’—)] o4
1 (9]) Ty
+ 8T(r) o4 4+ vir) - o4
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Then, if we use (67b) to define
op(r) = ndu(r) + (e + p — un)8T(r)/T

dk ke
_(We . p(k),

i

we have

(68)

34 0) = op0 2| 4arm ¥ +avn 2
P ITwv 9

aT

Py T.p

so that ép(r) does indeed have the meaning of a change in the pressure.
Finally, we eliminate 6u(r) from the disturbance (63) by making use of (67b).
With this substitution Eq. (63) becomes

ssett) = = [ de| P e, + 70 5,00 4+ v(0)-gtr, ) o

for t < 0, (69)

=0 fort > 0,

where ¢(r, t) is the operator previously encountered which represents changes
in the density of heat energy

qg(r, ) = e(r, t) — <e><j> P (e, ).

C. REPRESENTATION OF THE COMMUTATORS

We can now write the response of the system to the disturbance (69) as

S(A(x, 1)) = f_t at [ aret() for ¢ < 0,
= f—o dt'fdre“/{ } fori > 0
where
{h = (A 0, (], O)Deadp(f)/n 4+ (A2, 1), g(r, )])ea 8T (t)/T

+ <[A<I', t)) g(r7’ tl>]>9q~'v(r’)'

We introduce the representation (42a) for the commutators, the A; being ¢, n
and the components of g. For times less than zero, we then have

Ak) = f S(A(x, ) dr

j dw XA n(k w) P(k) fdw X4 q(k w) T(k) (70)
T

dw xg, (k, w)
[ R )



HYDRODYNAMIC EQUATIONS AND CORRELATION FUNCTIONS 449

For times greater than zero, the response may he represented hy

I

Alk, 2) ] dm“’/ dre "84 (x, 1)
0

(@ X7 @ 11 (71
M wlw —2) T l

_ / dw Xk, @) p(K) n / dw x1.q(K @) T(k)

i ;(w — 2) n

- ”

A x4.4 K, @)

+ / M Xagt D CT gk,
m wlw — 2)

We are interested in the cases in which A(r, t) 18 n(r, t), ¢(r, {), or g(r, i},
Therefore, we shall briefly discuss the properties of the lourier transforms of
the commutators formed from these conserved operators. By using time-reversal
mvariance, rotational invariance, and the Hermitian nature of the operators,

” ” ” ” 9 . g
one can show that x, ., Xee, Xn.e and x,. are each real odd funetions of w,
and that

Xty @) = xg.(k, o). (72)

“quation (72) expresses a reciprocity which was first discussed by Onsager
(16). Irom (71) and (72) it follows that the response of the density to a change
in the temperature (at constant pressure) differs by only a factor of n from the
change in the entropy density induced by a change in the pressure (at constant
temperature). In more complex situations than those we shall consider here,
this reciprocity leads to a connection between transport coefficients which would
otherwise have no obvious relation with one another.

The Fourier transform of the momentum-momentum commutator is a tensor,
since it is an average of a direct product of two vectors. However, the only
tensor quantities of which x;’_,,j(k, w) could be composed, in the absence of
long-range correlations, are the direct product 44, and the unit matrix 6, ,.
We find it convenient to express x(','“,,j in terms of linear combinations of these as

Xora; = (ki B)x] (k@) 4 (80 — ki Bx (ke w). (73
Here the { and t stand for longitudinal and transverse since the splitting that
we have indicated in (73) divides the tensor into two parts, one with components
in the direction of A, the other whose dot product with / is zero. Both parts are
real functions, odd in the frequency variable.

The conservation law

én 1

at,,ve=0

” . " ”
cnables us to express xg,, i1 terms of x; as

gl ) = xgulK, @) = = x/(h, @) (741
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while a double application of this law gives

‘\2
Conlly @) = = 3k, ). (75)
M=

One more result of the number conservation law is

k ,

Xea(K, ©) = xog(k, w) = — Xan(k, @). (76)

D. Sum RuLEes

By comparing Egs. (70) and (68) we can deduce a variety of Kramers-
Kronig relation sum rules analogous to Eq. (26) for the integrals of the various
commutators. For example, we may take A (r, t) = n(r, t). Then Eq. (68) gives

én on
= 2= —| T(k
n) = 22| p(o) + 571 T
so that Eq. (70) implies
1im[@_’Mk’_“’) = lim xaa(k) = n‘ﬁr (77a)
k-0 T w k0 p|r
. dw x’,:,q(k, w) _ 60
lim [ 2R B < 0 L) (77b)
For A(r,t) = q(r, t) we find
. dw xZ,q(k, w)  TaS| _ ., dn
Eﬁ?[?*ﬁ_—nV@T_ aT |» (77¢)
Im | = = var|, - ™l (77d)
For A(r, t) = g(r, 1)
Ak) = mnv(k)
so that Eq. (70) implies
limf@w = d;;mn
k-0 ™ w
which may be written
lim f dﬁ’&—(k’—w) = mn. (77e)
k=0 ™ w

and \
” ~ 2 2 ”
fﬁdﬁx———l(k’w) = / do © M- X———""(k’ w) = mn. (771)
iy w

* k2 w
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Iinally, by using the fact that the heat current is zero even when the system is
in motion, it is possible to show that

lim / (—{_w it (k) = 0.
T

k>0

By using the conservation laws, we can derive from this relation the sum rule

lim [ dw -(L;, ok, w) = 0. 17ig)
k=0 T MR-

Since 1. (68) is only valid for small k, the sum rules (77) need ouly be valid
in this limit. However, not all of the identities are really subject to this re-
striction. Equation (77f), which expresses a sum rule on the density-density
correlation funetion is, in fact, valid for all #. This sum rule can be derived from
an argument identical to the one that we used to get (27). That ix to sav, this
result is a consequence of the exact commutation relation

[a(r), g(r] = —i¥n(risir — 1]

which holds whenever there are velocity-independent forces. In fact, the sum
rule (77f) is o famous result. In solid state physies, it is usually referred to as
the longitudinal /~sum rule. It has played a very important role in the discussion
of the BCS theory of superconductivity."" In neutron scattering studies, it is
known as the Placzek sum rule (9).

In the classical limit, subject to the existence of the velocity correlation fune-
tion l'ourier transform or the absence of long-range order, (77e) is also exact
for all 4. It is a statement of the van Leeuwen theorem that the orbital mag-
netic susceptibility of a classical system vanishes. Landau (78) has discussed
how diamagnetic susceptibility can, in fact, appear in a quantum mechanical
systent. In our language, this is a consequence of the faet that

xilh) = xe(h) = a0l

can contain a term of order £° in the limit of small °.

The yuantum effects are even more drastic in a superfluid. In a superfluid
(77e) is not even satisfied in the limit 4% — 0. This failure of the sum rule ix
reflected in the anomalous electromagnetic properties of the superconductor,
the Meissner effect and the persistence of supercurrents and in the corresponding
properties of liquid helium. The source of this failure has been indicated. In
superfluids, correlation functions which involve the momentum die off too slowly
in space to permit the analysis we have employed,

The sum rule (77a) is particularly interesting since it is an additional sum rule

1 Nee, for example, ref. 17,
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on the density-density correlation function, a funetion which is very important
both experimentally and theoretically.”

An alternative, and very useful, expression of these sum rules is given by
taking the limit as z goes to infinity in Eq. (71). Then if A isn, ¢, and g, we find

+ 7—:; +o (i_?,)]
o eren ()
0[5, +o(5)]

|

lim — den(k, 2) = p(k) [g%
] (78a)

n

+ 100 |

lim — izq(k, 2)
(78b)

+ T(k) limncp + 0 G):I + k-v(k)o (:—2>

lin;} — zg(k,2) = v(k)[mn + 0(1/2)] + kp(k)[1 + o(1/2)] (78¢)

+ kT(k)o(1/z).

Notice that these expressions agree, as they must, with the results of our hy-
drodynamic analysis as given in Eqgs. (51), (56), and (57).

E. Low TeMPERATURE ForMms FOrR CorrELATION FuncTiONS

The hydrodynamic analysis led to particularly simple forms for the correla-
tion functions in the low temperature limit. (See Egs. (55a) and (55b).) The
response ¢(k, z) had no term proportional to p(k) and was proportional to 7'(k).
By comparing (55b) and (71), we see that for z in the upper half of the complex
plane

! ” 7 2
0 xalbs!) TSI

m o —2) VdT (79)

yat
T dS] °

Since

” do'  xoo(k, &)
] — R tadt 7.9 b _
Xua(k; @) © 7 (0 — w — t€)

we find the same diffusion structure for this heat-energy correlation function as

12 This sum rule, of course, expresses information about both the commutator and the
anticommutator of the density. In its anticommutator form, this result was used by Orn-
stein and Zernicke in their classical work on critical fluctuations. It has been more recently
employed by J. M. Ziman (/9a). The commutator form has been known to the authors for
quite some time. It was discussed by N. D. Mermin (19b). It has more recently been
stressed by D. Pines.
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we found for the spin density correlation funetion, namely,

"oy, 2 2 2 I"v (ZT s
Xea( Ry @) — &Tkw [w - <le T s . (80)

{See, for comparison, Eq. (19).)

Iu the low temperature case, the response of the density is also simple since
it contains, according to (55a), no term proportional to 7'(k) but only a term
proportional to p(4). By comparing (55a) and (71) we see

-1
] (_ILOZ(L"(/‘ ) = — 1n@[1 —|— 1 @-]\2 (22 - 1 dp + l[)[Z]\) :l (81)

mi wlew — 2) 12 9p m on m on

and consequently

_4 , ) , 2 .
ok o) = T |:<w _ Ldp 7> +(I‘wk2)‘:l (82)

m m dn

where I' = D, .

Iiquations (81) and (82) give the density response in the limit of small 4.
But, because the density correlation function is such an important quantity
both experimentally and theoretically, it is worthwhile for us to examine some
of the general properties of this function. Our analysis in this case closely parallels
the establishment of a dispersion relation for M (k, 2) in section E of the chapter
on spin response. In analogy with this work we define

do 1

Xnalk,2) = [ — — Xn n(/u,w)
T W
and
Xna(k) = Xn,n(,]f, 0) (83)
aud notice that the facts
lim xu . (k, 2) = }A de wxor o w) = /L";
= 2 ma

v
o

wxmn(k, @)
imply the dispersion relation

1 [Xn n(l\)i ljl - BerL,:z(A) . f(/w /n n(]L w,)
Xn n(l‘ Z) 'nkz - w wz(w — Z)

When z lies just above the real axis, we have

Xor el ) mw
v o4 e = T n,n k) — n, n
Xor.u(k, @ =+ ie) o X (R) = (e @) -
+(P {ii£1nn/\w‘>r

T o (0 — &)
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This result should be compared with Eq. (38) which gave the spin response as

(k) oy dmax(k)
m 1= -W (ke w) "
+o [% e fuulk o)

o (0~— )’

In the spin case, f(k, w) reduced to w/k’D 4 in the limit as the wave number and
the frequency went to zero. Therefore, we decided to define a frequency- and
wave number-dependent diffusivity by

Juu(k, @) = /KD y(k, »). (39)

In this sound wave propagation situation, Eq. (81) implies that for small %°,
1 1 1 _ldp _ mw o™
Xm0+ 16 xomk)  xonlbyo+ 9 nmdn  nk o

Therefore, we can write the spectral weight function which appears in (84) as

m

fn-ﬂ(k’7 w) = Xn,n( ) F(k CU) ~—w

with the knowledge that for low temperature systems I'(k, w) reduces to the
sound wave damping constant, I' = D, in the limit as the frequency and wave
number go to zero. With this definition the spectral function of (84) becomes

X (ky @+ €) — xan(k) = ’”,‘; ~ Zial(k, @)
(85)
mw dw’ r(k, o)

!
™ oW W

Consequently, an exact form for n(k, z)/p(k) is

@% — = - (%{Xn,n(k) - [Xn n(k) _ 72};:—2 — 1wP(k OJ)

+ 1 Sli L (k, “OT}
and
xun(k, @) = (n/m)T(k, w)k'w

<w2_ n k? e [% Tk, w)) [wk'T(k, o)} B0
mX (k) T — w

We should emphasize that the equations (85) and (86) are exact. However,
whether or not these equations are useful depends critically upon the simplicity,
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or lack thereoi, of the function I'(£, w). In the particular case of a low tempera-
ture ordinary fluid, we have seen that the equations of fluid mechanics imply
that T'(k, @) goes to the constant T' for low frequencies and small wave numbers
with @ ~ ck and also that x, .(k) — n(dp/dn)”". However, at nonvanishing
temperature I'(/, w) depends on the manner in which w and & approach zero,
since x . (k, w) must include the thermal diffusion process indicated 1 (5).
That is to say, I, like x”, has different limits, depending on the ratio of « and /
as they hoth approach zero. Specifically it can be shown that /(f, ») hasa term
which behaves like

L\2 —1
= <c” - >DTA:2w l:w + Dﬁ(‘”) /.-4}
c, c.
for small & and w.

We next comment further on the significance of the function [(/, w).
We observe that the part to which we have just referred has poles at
w = +iDr(c, ek’ = +i(k/mn)k’ corresponding to relaxation as a result of
thermal conduection. In addition, the function /(k, ) contained the term which
at low frequencies became mwI'x/n. This term vanished at high frequencies.
Both terms are consistent with a form

. . “dr olk, 1) wmy ¢:(F)w iy
Sk, w) =

b e F A/ T L@ () e

Conversely, such a form would give rise to an expression for x ' (4, 2)

+x”w>+x”Mk@f@?ﬂbef

=)

2
m z

TNhye) = — =%
x (k,2) S

which could be rewritten for z in the upper half-plane as

_ _msz _ 2_[00 1 ) 1
STl T Tty g et

or
_ o m 2 R dil k)
- n{ o~ 2 1= dzri(h)]
where
0l = - f drg(k, 7), or —— + 2 ¢.(k).
mx o mx :

The form we have hypothesized therefore corresponds to a weighted distribution
of relaxation times, r. Experimental evidence (20) seems to indicate that at
least this complicated a form is required. Such a form would be obtained if the
function f(k, w) could be calculated and if its analytic continuation into the
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lower half w-plane only possessed poles, or a branch line on the negative imagi-
nary axis. Generally, however, there may be both real and imaginary parts to the
singularities of f, and therefore of continuations of x *(k, z) into the lower half
plane. Under these circumstances f contains a distribution of resonant fre-
quencies as well as a distribution of relaxation times.

Finally we remark without exhibiting details that the phase representation,
which is convenient for carrying out stationary phase asymptotic evaluations
of x '(k, 2), in the general case reduces to

Co (w2 — czkg)w")

w cot 5(ky ‘-'-’) = Ep Dk?[l — (Cv/cp)](w2 — 02k2) - (cv/cp)rk2w2

and in the low temperature limit to
wcot 8(k, w) = (k" — °)/Tk".

F. EVALUATION OF THE ABSORPTIVE SUSCEPTIBILITY

At higher temperatures, n(k, z) and ¢(k, z) as given in Egs. (56) and (57)
contain both scund wave and diffusion poles. By using the same device as be-
fore, we can calculate the absorptive susceptibilities which describe the long
wavelength, low frequency response in this more general case. From (56), (57),
and (71) we find, for example, that for T(k) and v(k) equal to zero in the
ordinary fluid

xnn(k, @) = w Re [n(k, 2)/p(K)|.—otic
_an| 1 —(eo/cp)] Dok ton an W'k T (¢o/cp)
- oplr @+ (Dk)? op|r (@ — kB + (wkT):  (87a)

_ 01| Dell = (e/ep)) (o — K ok
apir (2 — M) + (kD)2
Similarly we find that
" _ nme,T Dr ko

Xa.o(k, w) = "o+ (D2 + (DR (87b)

and
” _én D1k’ Diko(o” — ') ]
xualk, @) = 57 ,,L,ﬂ F D) (@ — )P + @l (87¢)
Finally, from (51), it follows that
2
xt" (k, w) = nk (87d)

o + (nk*/mn)*
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We can sum up our results as follows: In the low wave number, low frequency
limit, the correlation function composed of the transverse component of the
momentum exhibits a diffusion structure with diffusivity, D, = 5/mn, given by
the viscosity divided by the mass density. The heat energy-heat energy correla-
tion function also has a diffusion structure but here the diffusivity is the thermal
diffusivity, Dy = «x/mne,. The density-density correlation tunction exhibits
hoth this diffusion process and a damped sound wave propagation. The fotal
weight of xi .., @ is n(dp/dn)r of which a proportion (1 — ¢.7¢,) comes from
the diffusion process and a proportion ¢, ¢, comes from the sound propagatiou.
The heat energy-density correlation function also reflects both processesx but
the sound propagation contributes negligible weight to x7 ., w.

(5. EXPREsSIONS FOR THE TRANSPORT COEFFICIENTS

I this section, we derive expressions for the transport coefficients: the thermal
conductivity, », the viscosity, », and the bulk viscosity, ¢. The expressions we
derive are Kubo-type formulas in that they relate the transport coefficients to
correlation functions formed of the currents of the conserved operators. The
argument that we use is essentially identical to that used in deriving Eq. (44).
In that situation, we started from the fact that the spin diffusion coefficient,
obeyed
lim l:hm xar (ke w)J = Dy X, u-

w0 k-0 I\

We then applied the spin conservation law to find

Duxu.y = glim [lim f dr f dt e (07, (x 1), 5.7, o)}>J.

w0 k-0
According to Eq. (87b),
lim [hm Xoa(F, w>:| = mine, TDy =
w->0 k-0 ]\

Therefore, the thermal conductivity can be expressed as

Y e

)

K= 8 lim [hm/dr/dt TRt e, 1), 7,00, 0) 1. (88u)

However, according to (87a),
lim |:11n1 )x,, Atk )] =0
w0 | k0 A2

0 = lim |:lim f dr [dt e Tt g (11, 4.0, 0')%)]

so that

w—0 k=0
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and also, according to (87c),

[im [hm i xm.o(k, w):l

w0

so that

0 = lim [lim/drfdt e T4, x, t),gx(0,0)}{l.

w—>0 k=0

Therefore, not only is the thermal conductivity given by expression (88a); it
is also given by the much more general expression

_E_- : f ./ —ik - rtiot
K—4T£l£101[:1;£1[} dr | die

(88b)
X (13,505 ) + Malr, £),7:7(0,0) + Aga(0, o>}>}

where A is any constant. The choice A = (e + p)/(mn) is particularly instrue-
tive since

e+p

i'(r, 1) + glr,t) =j(r, 1)
where j° is just the energy current. With this choice of A, the thermal conduc-
tivity can be expressed as

¢ = B 1im [lim / dr / dt e F TG 4 (x 1), 7.0, 0)})] (88c)
4T w50 k>0

The fact that the thermal conductivity can be represented by either expression
(88a) or expression (88c) sheds some light on an apparently puzzling relation
between the work of H. Mori and M. S. Green (21). Both authors worked with
k = 0 from the very beginning of their calculation. Mori used the grand canonical
ensemble and found a result of the form of (88a) in which the thermal conduc-
tivity is expressed in terms of a correlation function formed with j*’s. Green
used the microcanonical ensemble and found that the thermal conductivity
could be represented in the form (88c), in which the correlation function was
formed from energy currents. The difference between their two results and Green’s
explanation of it is rather disturbing since it seems peculiar to ascribe signifi-
cance to a correlation function whose value depends upon the ensemble used.

Our result complements the results of these two authors. We do not begin
with the ecase in which k is truly set equal to zero since, in this case, not all cor-
relation functions are well defined, and it is true that some depend on the en-
semble. The hydrodynamic equations manifest this ensemble dependence through
their strong dependence on initial conditions in time and boundary conditions
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at the edges of the container in which the system is enclosed. However, the
hvdrodynamic equations indicate that so long as 1/k is much smaller thau a
linear dimension of the container, these complications are irrelevant. As we
might expect physically, we can unambiguously associate a transport coefficient
with a spontaneous fluctuation function whenever the spontaneous fluctuation
tunction is physically well defined and ensemble independent. This is the case
whenever 14 is much smaller than a container dimension but larger than any
possible microscopic length. The evaluation of the physical functions in the
limit & — 0 is therefore assumed to take place after the container walls have
receded to mfinity. The Limit as & — 0, when the volume is kept finite, is en-
semble dependent in a manner which we can understand from the hydrodynamic
equations hoth mathematically and physically. The choice of a correet ensemble
and current when & — 0 first is in fact dictated by the requirement that the
ensemble and current yield a result in agreement with the ensemble independent
limit appropriate for 1" — o« and then & — 0. Under these circumstances, our
analysis of the hydrodynamic equations indicates that the thermal conductivity
can be expressed in terms of correlations of either j* or j°. Mori’s and Green's
discussions each present an ensemble and a current for which no error results
from the unphysical limiting process.

Iinally, we indicate that we can obtain the standard Kubo-type expressions
for the viscosity by employing the facts that, from (87d)

lim l:hm 2 Xt Tk, w :I =y (89n)

w -0 k>0 h

and from (87a)

lim rhm - x7 (k, w):l = lim [:lim n 20_ X:f:,, (Fk, w):] = ;4777 + ¢ (89b)
3

wst Lk K wst | ks0 K
Thus,
4 ™ /3 ¢ R —ik-r+iwt
37 + ¢ hm Ilm | dr d( = ( koglr,t), k-g(0,0)})e .
B w->0 k-0

Applying the same arguments as before, we find that the viscosity and bulk
viseosity may be obtained from the well-known correlation funetion expression

14 /, - /LIA {3 . i [ —ik - r+iwt
7 <5;_,- — 5 .m_> 4 ¢ =3 lim [11111 j dr / dte

-0 k>0

(90)

nm ll\

X Z 'I\.n_l;‘m T im ('I', t), TJ'H(O’ 0)1 >:|

where 7 is the stress tensor.
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APPENDIX A. PERTURBATION THEORY

In this appendix we remind the reader of the expression which results from
using time dependent perturbation theory to describe the effect of an external
disturbance. We suppose that prior to time ¢, the state ¥ is a stationary state of
the time independent Hamiltonian H. Subsequent to # an external disturbance
is applied which couples to the observable properties, 4 ;(r, t), of the system.
We describe this disturbance by an additional term in the Hamiltonian

Sy = [ dr T Ai(r, 1) as(r,0).

The functions a,(r, t) represent the generalized external forces. For example,
the observables might include components of the magnetization, in which case
the corresponding force a; would be the components of the external magnetic
field. To calculate the expectation value at time ¢ of the observable A; we must
calculate

(T(t), AS(r, )¥(L)), (A1)

where ¥(t) is the Schroedinger wave function which was equal to ¥ for ¢ <
and A.°(r, t) is the operator in the Schroedinger representation which char-
acterizes the observable. Time dependent perturbation theory may be generated
by introducing a wave function ®(¢) at time ¢ which would have become ¥(¢)
if no external perturbation had been applied, that is,

T(t) = ¢ FE(1),
From the Schroedinger equation we obtain

108/9t = e TOHS (D V(1)

; A2
®(t) = ¥(h) — zf dt' Hoeo (1) ®(t) (A2)

where for any operator 0O°(t), the corresponding interaction representation
operator is defined by

OI(t) = e'iH(t-to)Os<t)e—iH(l—to).

The formal solution of Eq. (A.2) is
12
V(1) = ¢ (exp l:—i dt'H:xt(t'):I) V(1) (A3)
to +

where the formal expression, the ordered product in brackets, is defined by the
power series generated by iterating Eq. (A.2). For later purposes we note
that direct integration of the equation for ¥ yields the alternative equivalent
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expression,
(\p[—t/ (H + H% () }
+

= T o I:—— z/ Hi(t dt:i .
+

Indeed, it is for this purpose that we have generated the perturbation series in
terms of states instead of developing it for the density matrix directly. Substi-
tuting into (A.1) we obtain

LA

WO, A (e, ) W) = f""I’(l‘()), exp [z HL () di ]

ty

t
~AJ«‘<Lr,t>exp[—z’f Hf.xt(mdt’] Wity
ty -+ .

By expanding the exponential we obtain the result to any desired order. In
particular, if we expand to first order, and denote by a bracket the average over
an ensemble of stationary states at time £, , we deduce

Al ) = e+ Y [ar [ ar
< < ZJ:/ ffo (ALY

r 7

A M, 0, AN O g ).

If the observables are not explicitly time dependent in the Schroedinger repre-
sentation, the operators A'(r, ¢) are the Heisenberg operators for the Hamil-
tonian . We shall henceforth assume that this is the case and omit the supet-
scripts I. In terms of the absorptive susceptibility, defined by

”

o't — 1) = 15(Adr, O, 4,00, 0]

Cdw it A6)
- / R TE X ST
=T
and the integral representation of the step function
(t — 1) =limi ] du ¢~ 0 for { < /'
— = — .= or

K €0 27 w + e

=1 for t > 1',

we may write

84,1, 1)) = lim 2 ‘?z/ dr’ f di’ / d de

>0 ; O o + e

—i@tt—t"

d ielt—tr
/ wxz,(r ' we T a1,
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We finally obtain
s e, 0) = X [ at [ a'ztedt = Oale, 1), (A7)

where %,;(r, r'; ¢ — ¢) is the Fourier transform of the complex susceptibility
x,-,»(r, I'l; w) and

xii (1, 5 0) = xi;(r, T'; w) + ixt;(1, £'; @) (A8)

is the boundary value as z approaches w on the real axis from above, of the
analytic funetion of 2z

ds xi;(r, ' @) (A9)

Xij(r, I'/;Z) = =
T w— 2z

APPENDIX B. SOME PROPERTIES OF THE COMPLEX SUSCEPTIBILITY

1. SYMMETRIES

In the text we noted the symmetry properties of x;; for a spatially invariant
system (that is for a system invariant under rotations, translations, and in-
versions) when A; was the same as A;. We summarize here the more general
symmetry properties.”

(a) Since %;; is a commutator, it is antisymmetric under interchange of r
with 1’, ¢ with 7, and ¢ with ¢. We therefore have

(it — 1) = =50, ;6 — ) B.1)
, .
Xty w) = =x5(r, 1; —w).

(b) The fact that %:; is the commutator of hermitian operators leads to the
identity

&i(r, r'5 6 — O = —[x5(r, 1’5t — 1))

» / ”x ' nE ’
Xii (L, IT;0) = —xi; (I, T; —w) = xji (I, T; @).

(B.2)

Thus the part of xi;(r, 1'; ) which is symmetric under interchange of 7 with

7 and r with 1’ is both real and odd in « while the antisymmetric part is imagi-

nary and even in w. These statements imply in particular that if x.(r, r'; w)
is spatially invariant it is real and odd in the frequency.

(e) A similar result applicable to different operators follows from time re-

13 Tt should be noted that all properties of the system are defined in terms of commu-
tators. The corresponding classical relations can be obtained by using the equivalence of
the commutator with the Poisson bracket multiplied by ¢ in the correspondence limit.
Obviously, this leaves the various symmetry properties unaltered.
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versal. Since the time reversal operator, T', has the property
(TV, TE) = (P, V),
and for hermitian operators, A,(r, t)
TA(r, HT ™ = ed (1, —1),

where ¢; is the signature of the operator 4, under time reversal, we have

!

=0, A, —0)Tw.

(W, [dr, 0, A, O¥) = ee; (T, [A;(r

Consequently whenever the Hamiltonian and the ensemble of states are m-
variant under time reversal
M ’ 7 /A ’-
Xii (1, 150 —1) = ee;X(r, 1;8 — 1) ‘
tB.3)
rn ! g " ’
Xii(I, T w) = ee;xll, I;w).

This means that if 4; and A, have the same signature under time reversal
X/, r'; w) is odd in w, real, and symmetric under interchange of 7 with j and
r with r’. If they have opposite signature, x/;(r, r': ) is even, imaginary, and
antisymmetric.

If the Hamiltonian and ensemble involve a magnetic field or some other
property which changes sigh under time reversal, then the relation

xi(r, ' w; B) = eiex(r, r;w; —B) (B3

is obtained. Hence for two operators with the same signature under time re-
versal there will be an additional part of x7;(r, r'; @) which is odd in the field,
B, even in w, imaginary, and antisymmetric in ¢, r and j, r'.

The symmetry properties of x,(r, r'; w; B) are determined from the relation

(B4

r,r;6;B)e 4 o)

3
W T oW

dé X7
xii(t, t'; w; B) = (Pf_ Xii
™

which means that they are identical apart from the interchange of evenness
and oddness in w.
2. 8tM Runes aAxp MoMENT EXPANSTIONS

The moment sum rule discussed in the text is the first of a sequence of state-
ments

({"11 i ‘ » .\‘\ 8 - n
g [—ﬁ),;lj(r', f’>:| : = /'{fi’ (—ia)'xiir @) (B
dtr e

These statements and the Kramers-IKronig relation (13.4) gives rise to 2 moment
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expansion, valid at high frequencies,
> f dis (g)" xii(r, 1’5 )
n T w w
7" d"A(r, 1)
Xn:wTﬂ<[—— , A4(r, t')]>

ditr

X:’j(r: I',; (.0)
(B.6)

t=t’

3. IDENTIFICATION OF x” WITH DISSIPATION

The rate at which mechanical work is done on a system by an external force is
equal to the explicit rate of change in the Hamiltonian

d(‘i—_[/t}{ = _Z f di(r, t)iij(r7 l"; t— t,>aj(rl7 t’) dt, dr d?",.
3%

The mechanical dissipation (which is equal to the entire dissipation at constant
entropy) is obtained by integrating this expression over time.

/dW Zfdrfdra(r,t)[ xii (5,15 1 — t):la,(r Yydedt'. (BT)

Since 0’ /9t is antisymmetrical in time and dx”/d¢ is symmetrical, only dx”/d¢
contributes to the dissipation. Alternatively, for a single frequency of applied
field

He(t) = “] dr Z Ar, t) Re a(r)e ™

and the mean value of the work done is

aw _ —lRe Z f dr dr'a* (£)iwx;(r, 1’5 w)a;(r').
dt 2 i
Since ' and x” are both hermitian the average comes only from x;;
dd—I;V - %Z fdr dr'a " (r)xi;(r, 1'; 0)a; (1) (B.8)
ij

We may also write this expression for the rate of energy exchange as the energy,
w, times the difference between transition probabilities for absorption and
emission

- g;fdr dr'fdte"“"ai*(r)([A,-(r, 1), A;(r', 0)Da, (1)
- wfdte"‘"‘]dEw(E) de’,;(E’)

{‘ E) dr al(r)A (1, 0)‘E\' (e"FTEN — gmE ”)}
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where p( ') is the density of states of the Hamiltonian, and w( £) the normalized
weighting of states of the stationary ensemble. In writing this equation and the
subsequent equations (B.9) and (B.14), we have assumed that the states may
be labeled by the energy alone, that is, that there is no degeneracy. When the
states are degenerate, these equations should include averages over states of
identical energy. This extra averaging process changes none of our conclusions.
We therefore obtain

R

32 [0 0lE + o a4 w)

— {2# / dEw( E)

(B
{
N\
|

(B.9)

- . R
— 27 (ZE'w(E)E'{f I EZ dra{r)A;(r,0) I — w - pl F — w)\,‘.
1275 ! | !

The rate of change of mechanical energy may of course be associated with the
rate of change of free energy in an ensemble at constant temperature. Since the
matrix x7, describes the dissipation it must be positive definite in any stable
system. This positive definiteness of wyi;(r, r'; w) has implications for x; jr,r;
w). In particular it follows from Eq. (B.4) that x/;(r, t'; ») is a nonnegative
matrix at vanishing frequency. Hence, for example, the static electric polariza-
bility must be positive. Likewise, for the one-component fluid discussed in the
text, this requirement reduces in the long wavelength limit to the familiar
thermodynamic stability conditions (dp/dn)s > 0, ¢, > 0, and (dp, dn)r > 0.

Note also that at large frequencies the “sign” of the matrix x;, is always
negative. This behavior is just what we expect for an oscillator hound by a
restoring force nw.’ and perturbed by an external force of frequency, w. Its
displacement will be 180° out of phase with the forece when w 3> w, and the
absorption is sufficiently small so that there is oscillation (that is, when we have
an oscillator damped less than eritically); also the absorption will be maximum
at an intermediate frequency when the displacement is out of phase with the
force by 00°. Although we shall not pursue the point. it should be elear that in
the representation in which x;(r, r'; w) is diagonalized, its logarithm gives a
natural definition for frequency-dependent phase shifts in precise analogy
with the above description and the phase shift representation discussed in
connection with the dispersion relation for magnetic suseeptibility.

4. Fruervamion DissipATION THEOREM

The time translation property of the weighting factor for a canonical en-
semble and the cyclical property of the trace imply the identities
Tr e 4,00, 0A,(0, () = Tr Ai(r, t + iB)e ™4 (1, ()
s (B.10)
= Tre "d4,(r, YA ,(r, t + 48).

Moreover Tr [exp (—gH)A(r, t)] is independent of time. Consequently, pro-
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vided the time Fourier transform
B, ) = (it DAL, O — (A, 00 = [ 52 fulr, f0)e )
exists, it satisfies
fis(r, ¥ @) = fiu(r, 15 —w)e™
and therefore,™
xi(r, f'y0) = (1 — ™) fu(r, r'; w) = (& — V)fiu(r, 1; —w). (B.11)
Likewise the transform of the symmetrized product

}é({[A‘u(r7 t) - <Ai(r7 t)>]) [Aj(r,J t,) - <Aj(r’y t,)>]}>

satisfies the identity
(1, 15 0) = (14 &)fu(r, 1'; @)
and the fluctuation dissipation theorem'®
%—su(r, o) = l:% + e 1_— 1:| X;,i(r,wr'; @)
(B.13)

cothﬁzw xii(r, s w).

2

We may use the expression (B.8) for the dissipation and (B.13) to demonstrate
that our statement of stability

W = —;-Z f dr dr'a;*(r)xi;(r, 1'; w)a;(t)e = 0
ij
is satisfied by the canonical ensemble. For this purpose, with the aid of Eq.

(B.13) it is only necessary to show that the fluctuations at a single frequency are
positive definite. By introducing a set of intermediate states we obtain

W = 14w tanh 1480 f dEw., (E) f AE o(EVS(E — E + o) + 8(E — E — )]
X 2w \ ’ ) g 0,
(B.14)

where w.q.(E) is the normalized distribution for the equilibrium ensemble.

14 This is the first relation in the appendices which depends on canonical averaging.
We shall subsequently assume this particular density matrix.

15 Had Poisson brackets and classical mechanics been employed, this relation would
have involved 2/Bw instead of coth (8e/2).
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APPENDIX C. RELAXATION

In this final appendix we make explicit the connection of our discussion with
the widely quoted peculiar looking dissipation funetion of Kubo. We also demon-
strate how the latter arises directly in a discussion of relaxation and leads al-
ternatively to the expression for relaxation discussed in the text. We recall a
familiar parallel. In classical electromagnetic theory we use the retarded Gireen’s
tunction for the wave equation to determine the radiation emitted by charges
moving along prescribed trajectories. We also use this function to tind the
hehavior of radiation in free space in terms of the radiation present at an initial
time. The former corresponds to the characterization of the response to ex-
ternally applied forces. The latter corresponds to the relaxation prohlem we shall
now discuss. It would clearly be possible to consider simultaneously emission of
radiation by charges undergoing prescribed motions and the propagation and
absorption of incident radiation present initially. Likewise it would be possible
to diseuss a system relaxing to equilibrium and simultaneously subjected to
external forces. Since there is no really new effect we shall confine ourselves to
free relaxation.

We suppose that initially the system is characterized by a disturbed density
matrix

where

I
I

= exp L—ﬁH + 82 ] dr':hkr’)af(ﬁ]

= exp [_‘ﬂ(H + H(‘xt‘)]

(C.1)

Note particularly that although we have again used the symbol H,., it here
describes an initial condition and does not depend on the time in any way.
For times ¢ > 0, a property A of the system transforms according to

ddr t) = MA )"
Thus we have
(A1, ) hnoneq. = Tr [A (1, t)p]. (C.2)

We now employ a special form of the identity (A.4)

B
exp [—8(H + Hed)] = exp (—BH) exp (—f Hi.(—i8") dﬂ') )
0 + (0.3

Hlx(—ig") = exp (8'H)H owt exp (—g'H)



468 KADANOFF AND MARTIN

To first order in H. , we obtain from Eqgs. (C.1-3)

g
amxgww=zjd££dﬂ@xﬂ—mwmqum ()
- <Aj(l',, _i:B)>eq.<A‘i(r; t)>eﬂ-]ai(r,)-

Taking into account the relaxation between the unordered products and the
commutator (B.11) we obtain

8
awmm=2]ﬁ/ do xiy (5,15 &) istnigng (o)
J 0 ™

efo — 1

-3 [ad [0 s @),

Thus the Kubo expression (C.4) is a peculiar way of writing the ensemble
averaged commutator, that is to say

(C5)

B8
fO <Ai(r: t)Aj(r) iIBI>>GQ- dB’ = _1’<[Az(r7 t): Aj(rly 0)]>e1- (06)

Since these expressions apply for ¢ > 0 it is natural to introduce one-sided Fourier
transforms as in the text and write

mmw=—é;/&[[%ﬁﬁ§£§—mmxwﬂ%w» )
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